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Using exact quantum Monte Carlo calculations, we examine the interplay between localization of
electronic states driven by many-body correlations and that by randomness in a two-dimensional system
featuring linearly vanishing density of states at the Fermi level. A novel disorder-induced nonmagnetic
insulating phase is found to emerge from the zero-temperature quantum critical point separating a
semimetal and a Mott insulator. Within this phase, a phase transition from a gapless Anderson-like insulator
to a gapped Mott-like insulator is identified. Implications of the phase diagram are also discussed.
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Introduction—In disordered low-dimensional noninter-
acting systems, single-particle eigenstates are exponentially
localized due to coherent backscattering [1]. Over the last
decade, the study of correlation effects on disordered, non-
interacting Anderson insulators has witnessed an extraor-
dinary development [2,3]. In particular, the concept of
many-body localization [4] has received much attention,
and profoundly extended our pictures of the metal-insulator
transitions to many fundamental nonequilibrium questions
such as eigenstate thermalization [3].

In a second noninteracting context, free fermions on a
honeycomb lattice, the discovery of topological insulators
[5.6] has further enriched our understanding of matters by
going beyond Landau’s symmetry breaking theory. A
current frontier of theoretical research focuses on expanding
the phenomenon to correlated systems [7,8]. Remarkable
results with implications outside condensed matter physics
have been reported. For example, topological superconduc-
tors [6] have been shown to display fascinating properties
including the emergence of space-time supersymmetry
[9-11].

Since disorder and interactions are both present in real
materials, it is natural to put these two new areas together
and investigate the role of correlations on a disordered
Dirac system. Study of this problem in the case of attractive
interactions has already led to the interesting conclusion
that disorder induces a superconducting phase by giving
rise to a nonzero density of states [12]. In this Letter we
address the important questions which arise when repulsive
interactions and randomness are included in a system with a
Dirac spectrum, and, specifically, the interplay of the
quantum critical point associated with the semimetal to
antiferromagnet (AFM) transition in the clean system with
the localizing effects of disorder.

Phenomenologically, this separation of the metal insu-
lator and AFM transitions is reminiscent of the problem in
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the physics of the disordered bosonic Hubbard Hamiltonian
[13,14]: the question of whether there could be a direct
superfluid to insulator transition, or whether a “Bose Glass”
phase always intervenes. This issue was very actively
debated over more than a decade [15-22] before finally
being settled [23]. Even so, subtleties of the result con-
tinued to be explored [24,25]. Our work here marks the first
step in addressing similar issues for fermions. We focus on
the Anderson-Hubbard model on the honeycomb lattice, a
minimal model that includes both disorder and interactions
in a 2D Dirac system. The model is solved numerically
using the exact determinant quantum Monte Carlo
(DQMC) method [26] that treats disorder and correlations
on the same footing. Electronic, transport, and magnetic
properties are analyzed, resulting in the key findings
summarized in the phase diagram Fig. 1. Whereas in the
absence of disorder the metal insulator and AFM phase
transitions coincide at a common critical coupling [27], an
intervening nonmagnetic insulating phase emerges from
the quantum critical point with the addition of disorder.
Inside this novel nonmagnetic phase, a subtle crossover
between two different types of insulators is uncovered.

Model and method—The Anderson-Hubbard model is
defined as

i = _Ztij(eiTgéja + eLeia) - ﬂzﬁia
(ij)o

ioc

S O

éiTG (¢j5) 1s the spin-o electron creation (annihilation)
operator at site i. U > 0 is the interaction strength. f; is
the hopping integral between two near-neighbor sites i
and j. The chemical potential x4 determines the density of
the system, and 7i;, is the number operator. Disorder is
introduced through the hopping matrix elements #;; chosen
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FIG. 1. Phase diagram of the disordered Hubbard model on the N. erA ’ Zreg r A 3)

honeycomb lattice at half-filling. A labels the disorder strength
and U represents the local Coulomb repulsion. Phase boundary
lines are guides to the eye. The metallic phase boundary is
determined by the temperature dependence of the conductivity
04. and the region of long range AFM order by finite size scaling
of the AFM structure factor. The (black) triangle point is obtained
using the Drude weight data presented in the Supplemental
Material [29]. Lines are guides to the eyes. Although these
transitions coincide in the clean limit, for nonzero A an
intermediate, magnetically disordered, insulator phase intervenes.
This phase itself contains a transition from Anderson-like to
Mott-like insulators. The inset shows the geometry of the L = 6
lattice where sublattices are labeled by blue and red colors.

uniformly P(t;;) = 1/A for t;; € [t — A2, + A/2], and
zero otherwise. The strength of disorder is characterized
by A. We set t = 1 as the energy scale and consider y = 0,
where the disordered system is half-filled and particle-hole
symmetric [28].

Within the DQMC approach [26], the Hamiltonian
Eq. (1) is mapped onto free fermions coupled to space
and imaginary-time dependent Ising fields. The integration
over all possible field configurations is carried out by
Monte Carlo sampling. The discretization mesh Az of the
inverse temperature f = 1/T was chosen small enough so
that the “Trotter errors” are smaller than those associated
with the statistical sampling. This approach allows us to
compute static and dynamic observables at a given temper-
ature 7. Because of the particle-hole symmetry, the system
is sign-problem free and the simulation can be performed
at large enough S to converge to the ground state. Data
reported are obtained on 2L honeycomb lattices with
periodic boundary conditions. The inset of Fig. 1 shows the
L = 6 geometry. In the presence of disorder, results are
averaged over 20 disorder realizations [29]. The error bar
reflects both statistical and disorder sampling fluctuations.

To study the possible metal-insulator transition (MIT),
we examine the 7-dependent dc conductivity computed
from the momentum q- and imaginary time z-dependent
current correlation function [34]

Here N, is the number of unit cells, A and B are sublattices
of the honeycomb lattice, and S% is the z component
spin operator. The inner (outer) bracket (...) denotes
Monte Carlo (disorder A) average.

Results and discussion—We first demonstrate results
for the disorder-free system. Figure 2(a) shows o4 (7)
computed on the L = 12 lattice across several coupling
strengths. Regardless of U, the conductivity increases until
the temperature is lowered to 7 Z 0.25. For U < 3.8,
doy/dT < 0 and o4, diverges as the temperature is further
decreased to the limit 7 — 0. For U > 4.0, the 64.(T') curve
is concave down and approaches zero with decreasing
temperature. This change of low-T behavior in ¢4 (7T)
suggests that there is a metal-insulator transition [28].
Given the available data, the estimated MIT critical point
is U2 ~39+0.1. To examine the magnetic transition,
Fig. 2(b) presents a finite-size scaling study of the AFM
spin structure factor Sapy/N,.. By extrapolating the data to
the thermodynamic limit, we estimate the critical point of
the magnetic phase transition to be U™ ~ 4.0 + 0.3. The
critical points coincide and are consistent with previous
findings [35].

(a) L=12 A=0.0

—0— U=3.0

L (b) A=0.0

FIG. 2. (a)dc conductivity 4. versus temperature 7 in the clean
limit A = 0 computed at various coupling strengths forthe L = 12
honeycomb lattice. (b) Scaling behavior of the normalized AFM
spin structure factor S sgy/N . at corresponding U values. Solid and
dashed lines represent third-order polynomial fits to the data.
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Next we move on to the disordered case, presenting
transport property results first. We begin the discussion by
noting that in disordered graphene and without interactions,
electronic transport has been extensively investigated
[36-44]. Figure 3 shows o4.(T) computed in a range of
disorder strengths at four representative coupling strengths.
In panels (a)—(c) of the figure, the low temperature behavior
of o, clearly indicates that there is a disorder-driven metal-
insulator transition. For instance, at U = 1.0 and A = 0.5,
the conductivity curve is concave up doy./dT < 0 for
T £0.2. By the time the temperature drops to 7 ~ 0.1,
o4c(T) is increasing rapidly, indicating that the system is
metallic. At A = 2.5, on the other hand, 64.(7T) decreases
as the temperature is lowered, and approaches zero as
T — 0, suggesting that the system has become insulating.
At U = 1.0, the metal-insulator transition critical disorder
strength is estimated to be A, ~1.7+0.2. A, becomes
smaller as U is raised. The critical disorder strengths for the
MiITare A, ~1.54+0.2and 1.1 £ 0.1 for U = 2.0 and 3.0,
respectively. At U = 4.0, the conductivity curve plotted in
Fig. 3(d) exhibits an insulating response doy./dT > 0 and
approaches zero as T — 0 for any A > 0.5. As an inde-
pendent check of the above findings, we have computed the
Drude weight D(w,,) in the low Matsubara frequency limit
®, = 0at A = 0.5. The data presented in the Supplemental
Material [29] point to a MIT at a coupling strength between
U = 3.0 and 4.0, consistent with transport results.

—O— A=0.5
—0— A=1.0
—4— A=15
—t— A=17

(a)L=12U=1.0
O

Sdc

0.0 SR
02 03 04 05 00 01 02 03 04 05
T T

FIG. 3. Temperature dependence of the dc conductivity oy
measured on the L = 12 lattice with disorder at (a) U = 1.0,
(b) U =2.0, (c) U =3.0, and (d) U = 4.0. In each figure, lines
are guides to the eyes. Metallic and insulating behaviors are
indicated by solid and dashed lines, respectively. In panels
(a)—(c), the low-T behavior of o4, clearly indicates a disorder-
driven metal-insulator transition.

The “metallic” region of the phase diagram Fig. 1
summarizes these transport results. As previously found
for the quarter-filled square lattice Hubbard model with
bond disorder [28], our data suggest that the onsite
Hubbard repulsion can introduce metallic behavior in the
2D honeycomb lattice even at the Dirac point where the
density of states is vanishing for U = 0.

Another electronic property of interest is the single-
particle gap. Without disorder, the half-filled Hubbard
model on the honeycomb lattice exhibits a charge (Mott)
excitation gap at sufficiently large U [27,35]. The non-
interacting Anderson insulator, on the other hand, is gapless
at the Fermi level (in the thermodynamic limit) [45,46].
Although the gap is not an order parameter associated with
symmetry breaking, it nevertheless can be used to establish
the existence of the Mott insulator.

The single-particle gap can be extracted from the density
of states; however, here we distinguish between gapped and
gapless systems using the charge compressibility k() =
d{i(p))/du at the Fermi level, where (7i(u)) is the average
density at chemical potential p. Results for x(u) evaluated
at inverse temperature f = 10 are depicted in Fig. 4 for
L = 12 with various disorder A and coupling strength U
combinations. Tuning u away from half-filling breaks the
particle-hole symmetry and leads to a sign problem.
However, the problem becomes less severe in the presence
of disorder [47], and we are able to obtain accurate data.

In the thermodynamic limit, the compressibility x of a
gapped (gapless) system is vanishing (finite) at 7 = 0.

0.3 0.3

t(a) L=12 p=10 A=0.5 (b) L=12 p=10 A=1.0
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FIG. 4. Charge compressibility x versus chemical potential y
computed for the linear size L = 12 disordered lattice at inverse
temperature # = 10. To distinguish between gapped and gapless
phases, we have adopted a finite threshold x < 0.04 deduced from
the procedure described in the Supplemental Material [29].
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FIG. 5. Finite-size scaling studies of the AFM spin structure
factor. Statistical errors of DQMC results are smaller than the
symbol size. Lines represent cubic polynomial (in 1/L) fits to the
data. A finite y-axis intercept in the L — oo limit indicates
the existence of long-range magnetic order. Here again, we have
used solid and dashed lines to label magnetically ordered and
disordered phases.

However, on finite lattices and at nonzero temperatures,
requiring x = 0 overestimates the critical coupling due to
temperature broadening effects [31]. Analysis of the effect
of finite 7" in the noninteracting limit suggests x ~ 0.04 as
an appropriate threshold. See Supplemental Material [29].

Figure 4 suggests that for A = 0.5, the system becomes
incompressible at U, ~ 4.0 &= 0.5. Increasing the level of
randomness, the gap develops at a lower interaction strength,
U.~38+£0.5 and 3.0+0.5 at A = 1.0 and 2.0 respec-
tively. We are not able to pinpoint the exact location where
the gap opens at each disorder strength due to the coarse-
grained data. Nonetheless, an estimated phase boundary
separating Anderson-like (gapless) and Mott-like (gapped)
insulators is presented in the phase diagram Fig. 1.

We now consider the effect of randomness on magnetic
order. Figure 5 summarizes finite-size scaling studies of the
AFM structure factor on lattices up to 2L? = 450 sites. For
U < 2.0, where there is no AFM order in the clean limit, the
disorder has essentially no effect [cf. Figs. 5(a) and 5(b)].
At U > 4.5, disorder suppresses the long-range AFM order
and increases the critical interaction strength. A likely
mechanism for the suppression is the tendency towards
singlet formation on pairs of sites with large #;; [48]. Based
on the extrapolated Sp\v/N,. in the thermodynamic limit, a
estimated phase boundary for the onset of AFM magnetic
order is shown in Fig. 1.

Summary.—We have studied electronic and magnetic
properties of a disordered Hubbard model on the

honeycomb lattice using the DQMC algorithm. In the
absence of disorder, we have verified our results are
consistent with previous (higher resolution) findings [27].

In the U = 0 limit, the semimetallic phase is driven into
a gapless Anderson insulating state by randomness.
Switching on the local Coulomb repulsion U, the critical
disorder strength for the metal-insulator transition
decreases, suggesting that the presence of both disorder
and interactions becomes more effective in localizing
electrons. At U > 4.5, electrons are localized by strong
Coulomb correlations in the absence of disorder: the
magnetic transition and metal-insulator transition coincide
in the clean limit. Our key finding is that adding random
disorder reduces the threshold U required for insulating
behavior, but increases the U required for antiferromagnetic
order. Thus, the magnetic and metal-insulator transitions no
longer coincide, and a disordered insulating phase inter-
venes. Furthermore, within this disordered insulator, there
is a transition from an Anderson-like gapless state to a
Mott-like gapped phase.

Already, certain unique features of the interplay of
disorder and interactions in models with a Dirac dispersion
have been noted, including the possibility that disorder
might enhance superconductivity for attractive interactions
[49]. Our work expands this understanding to repulsive
interactions, where similar anomalous effects such as an
enhancement of Néel temperature by randomness are
known [50] for conventional geometries. Moreover, the
reduced critical coupling strength for the metal-insulating
transition in the presence of disorder might be relevant for
practical applications of honeycomb structural materials
such as a low power Mott transistor. Recently, it was shown
[51,52] that strongly coupled electron-hole plasma in
graphene (dubbed the Dirac fluid) near the charge neutral-
ity point violates the Fermi liquid theory. While our work
does not address the issue directly, these are the first steps
to future numerical studies of non-Fermi liquid behaviors in
Dirac fluids. Finally, we note that there is a renewal of
interest in disorder effects in correlated systems using
optical lattice experiments. These ultracold atomic systems
allow precise control over disorder and coupling parame-
ters, making direct comparisons between experimental data
and theoretical predictions feasible [53]. Results reported in
this work could be used as guidance in future cold atom
experiments.
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