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We investigate ground state properties of the half-filled staggered-flux Hubbard model on a square

lattice. Energy gaps to charge and spin excitations and magnetic as well as dimer orders are calculated as a

function of interaction strength U=t by means of a constrained-path quantum Monte Carlo method. It is

found that the system is a semimetal at U=t & 5:6 and a Mott insulator, with long-range antiferromagnetic

order, at U=t * 6:6. In the range 5:6 & U=t & 6:6, the ground state is a correlated insulator where both

magnetic and dimer orders are absent. Furthermore, spin excitation in the intermediate phase appears to be

gapless, and the measured spin-spin correlation function exhibits power-law decaying behavior. The data

suggest that the nonmagnetic ground state is a possible candidate for the putative algebraic spin liquid.
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At sufficiently low temperatures, condensed matter
systems have a tendency to undergo phase transitions
and develop long range order which reflects broken sym-
metry [1]. In a two-dimensional antiferromagnet, however,
Anderson recognized that the system could have a ground
state that avoids all spontaneous symmetry breaking and
does not have magnetic order even at zero temperature [2].
Anderson’s discovery, in conjunction with many subse-
quent theoretical investigations, uncovered a new class of
matter, named spin liquids, that go beyond Landau’s para-
digm. Most notably, in contrast to conventional symmetry
breaking, spin liquids possess topological orders that can-
not be characterized by local order parameters and carry
fractionalized excitations [3].

Model Hamiltonians have played an important role in
realizing such exotic spin liquid states [4,5]. Evidence
of spin liquid phases has been found in the spin 1=2
Heisenberg model on triangular lattices [6], square lattices
with frustration [7–9], and kagome lattices [10]. In these
geometrically frustrated systems [11], antiferromagnetic
(AF) orders are suppressed by strong quantum fluctuations.
In addition to spin systems, there is also progress using the
Hubbard model which contains spin and charge degrees of
freedom. Spin liquid ground states have been identified in
the model on anisotropic triangular lattices [12] and on
bipartite honeycomb lattices [13].

In this Letter, we examine ground state properties of the
half-filled staggered-flux Hubbard model (SFHM) on a
square lattice. As will be seen later, low energy physics
in the SFHM is described by Dirac fermions, similar to
those found in the Hubbard model on honeycomb lattices
[13]. The model is defined by the Hamiltonian

H ¼ � X
hiji;�

ðtijcyi�cj� þ tjic
y
j�ci�Þ

þU
X
i

�
ni" � 1

2

��
ni# � 1

2

�
; (1)

where tij ¼ tei�ij is the nearest-neighbor hopping and we

set t ¼ 1 throughout this Letter. The operator cyi� (ci�)
creates (annihilates) an electron with spin � ¼" , # at site i
on a lattice of size N ¼ L� L. U > 0 is the onsite
Coulomb repulsion. We work in the canonical ensemble.
An electron gains a phase � ¼ P

h�ij when it hops

around a plaquette of the square lattice.� ¼ 0 corresponds
to the original Hubbard model. We focus on the case
� ¼ � in the present study. There is a gauge freedom in
choosing �ij. Here, we distribute the phase � equally over

all bonds around a plaquette and arrange the hoppings
according to Fig. 1(a). This leads to a lattice with
plaquettes threaded alternatively by flux � and ��. At

U ¼ 0, the energy spectrum is �k ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2kx þ cos2ky

q
.

The two energy bands meet at the Fermi surface �k ¼ 0
located at nodal points k0 ¼ ð��=2;��=2Þ, as shown in
Fig. 1(b). Close to the four nodal points the energy depends
linearly on k, which is similar to the massless Dirac
spectrum found on the honeycomb lattice.
Our key result is that, an intermediate nonmagnetic insu-

lating ground state is identified between the semimetal phase
at weak interaction strengths and the AF Mott insulator at
strong couplings, where the hopping terms become irrele-
vant. The calculated dimer correlation function shows that
columnar valence bond order is also absent in the intermedi-
ate phase. These results seem to indicate that the nonmag-
netic insulating phase is a candidate for the putative algebraic
spin liquid ground state. Therefore, our work suggests that
recent progress in optical lattice experiments [14] might
provide a promising way of simulating the model.
The SFHM is solved numerically by means of the

constrained-path quantum Monte Carlo method [15].
Details of the method are described in the Supplemental
Material [16]. We begin with the results for the charge
excitation gap. In the canonical ensemble, the charge gap at
half filling can be defined as [17]
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which is the energy cost of removing a pair of electrons
from the half-filled ground state while keeping the system
in the Sztot ¼ 0 sector. We measure �CðLÞ as a function of
the interaction strength U on lattices with linear dimension
up to L ¼ 14. As shown in the inset of Fig. 2(a), the charge
gap increases with U on finite lattices. To pinpoint the
critical interaction strength where the system turns into
an insulator, we extrapolate �CðLÞ at fixed U to the ther-
modynamic limit L ! 1 using the ansatz: �CðLÞ=L2 ¼
�Cð1Þ þ fðLÞ, where fðLÞ is a polynomial in L�1 that
satisfies fðL ! 1Þ ! 0. In a gapped or ordered phase,
fðLÞ is typically a linear function of L�1 [17]. However,
to take into account both gapped and gapless cases, we
choose fðLÞ to be a second order polynomial in L�1. This
functional form is also implemented in previous works,
most recently in Refs. [8,9,13]. The results, shown in the
inset of Fig. 2(a), indicate that the system is gapped for
U * 5:6.

In addition to the charge excitation gap, AF long-range
order is another essential feature characterizing a Mott
insulator. To investigate whether there is any AF order in
the ground state, we calculate the spin structure factor at
the Néel wave vector qAF ¼ ð�;�Þ

SðqAF; LÞ ¼
X
r

eiqAF�rhSxrSx0 þ SyrS
y
0 þ SzrS

z
0i; (3)

where S�r is the spin operator along the � direction (� ¼ x,
y, z), and hS�rS�0 i is the equal-time spin-spin correlation

function. Defining m2ðLÞ ¼ SðqAF; LÞ=L2, a magnetically
ordered phase is singled by a finite m2ðLÞ in the thermody-
namic limit. The inset of Fig. 2(b) shows the results of
m2ðLÞ as a function of U on finite lattices. In order to take
both magnetically ordered and disordered phases into ac-
count, we use second-order polynomials in L�1 [18] to fit
the QMC data and extract the value ofm2ðLÞ in the L ! 1
limit. It can be seen, from the inset of Fig. 2(b), that AF
order kicks in at U * 6:6, below which the system is in a
paramagnetic phase.
Our above analysis of charge gap and magnetic order

suggests that the ground state of the SFHM is a semimetal
at U & 5:6, and becomes a Mott insulator with long-range
AF order at U * 6:6. Therefore, unlike the original half-
filled Hubbard model that, owing to the perfect nesting on a
square lattice, has AF order at arbitrarily small U [19], the
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FIG. 2 (color online). (a) Extrapolation of the charge gap
�CðLÞ. Solid lines represent second-order polynomial fits to
the QMC data. Inset shows the charge gap �CðLÞ as a function
of U obtained for L ¼ 4, 6, 8, 10, 12, 14, and extrapolated
(empty circle) values. Lines are guides to the eye. (b) Finite size
extrapolation of the spin structure factor m2ðLÞ. Solid lines are
second-order polynomial fits to the QMC data. Inset: m2ðLÞ
versus U on finite lattices and extrapolated (empty circle) values.
Lines are guides to the eye.

FIG. 1 (color online). (a) Arrangement of hopping amplitudes
on a square lattice. The phase � ¼ � is distributed equally so
that t1 ¼ t2 ¼ t3 ¼ t4 ¼ ei�=4. (b) Band structure of the tight-
binding Hamiltonian. (c) Top panel: power law exponent �
extracted from fits to staggered spin-spin correlation functions.
Bottom panel: thermodynamic limit charge gap �C and mag-
netic moment m2 (see text for definition). The shaded region
indicates the nonmagnetic insulating phase.
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SFHM has a finite Mott transition point. A similar finite U
Mott transition was reported in the square lattice Hubbard
mode with uniform � flux [20]. Moreover, our results
indicate that in the region 5:6 & U & 6:6 there is an inter-
mediate phase that is neither a semimetal nor a Mott
insulator.

The absence of AF order in the intermediate phase
indicates that the ground state is dominated by short-range
spin correlations. At large distances, the spin correlation
function could either decay exponentially or follow a
power-law. To study the nature of the nonmagnetic insulat-
ing phase, we first calculate the spin excitation gap.
Following Ref. [21], we write the spin gap at half filling as

�SðLÞ ¼ Eg

�
N

2
þ 1;

N

2
� 1

�
� Eg

�
N

2
;
N

2

�
; (4)

whichmeasures the energy cost of flipping an electron from
spin-down to spin-up. Based on confinement arguments, a
gapped spin excitation implies a finite correlation length,
leading to an exponentially decaying spin-spin correlation.
On the other hand, the correlation function would be
described by a power law if the spin excitation is gapless.
We compute �SðLÞ as a function of U on finite lattices.
The spin gap results are shown in the inset of Fig. 3(a) for
5 � U � 7. The data at a given U are then extrapolated to
L ! 1 using a second-order polynomial in L�1 to extract
the spin gap in the thermodynamic limit. Typical behavior
of the fits is plotted in Fig. 3(a). As expected, the extrapo-
lated spin gap remains zero, in the gapless semimetal phase
(U & 5:6) and in the Mott phase (U * 6:6), due to the
presence of gapless spin wave excitations. More impor-
tantly, �SðLÞ also shows gapless behavior in the region
5:6 & U & 6:6, implying that the spin-spin correlation
should follow a power law at large distances.

To support this observation, we plot in Fig. 3(b) the
staggered spin-spin correlation function along the x axis.
It appears that CðrÞ, indeed, decays algebraically at large
separations. Moreover, the correlation function decays
more slowly with increasing U, and starts showing satura-
tion in the Mott phase (U * 6:6). In order to quantify the
long-range behavior of CðrÞ, we fit the staggered spin
correlation function to a power law �jrj� for jrj � 2,
where � and � are two fitting parameters. At U ¼ 0, it is
known that CðrÞ decays as jrj�4 [22]. This is also demon-
strated in Fig. 3(b): the fitted exponent of CðrÞ for free
fermions on a half-filled 24� 24 is � ¼ �3:95� 0:13.
The exponent � as a function of U, extracted from several
half-filled lattices, is plotted in the top panel of Fig. 1(c). It
can be seen, from the figure, that � immediately increases
with U from its noninteracting value due to the effect of
interaction. Although the data are quite scattered, the figure
suggests that the exponent� increases slowly withU in the
region 5:6 & U & 6:6.

Next, we consider other order parameters proposed in
Ref. [22]. The simplest scenario is the columnar valence

bond solid (VBS) which breaks translational symmetry.
The VBS order can be probed by measuring the dimer
structure factor

D��ðq; LÞ ¼ 1

N

X
r

eiq�rCz
��ðrÞ; (5)

where Cz
��ðrÞ is the z component equal-time dimer-dimer

correlation function for singlet bonds along the � direction
(� ¼ x, y)

Cz
��ðrÞ ¼ hSz

rþ�̂
SzrS

z

�̂
Sz0i � hSz

�̂
Sz0i2: (6)

In the columnar VBS state, dimers line up coherently.
Therefore, D��ðq; LÞ would pick up a characteristic
momentum at kxx ¼ ð�; 0Þ or kyy ¼ ð0; �Þ for � ¼ x or

� ¼ y depending on the orientation of the bonds. Indeed,
D��ðq; LÞ peaks at k�� in our finite size simulations, as
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FIG. 3 (color online). (a) Finite size extrapolation of the spin
gap �SðLÞ. Solid lines are second-order polynomial fits to the
Monte Carlo data. The inset illustrates �SðLÞ and its extrapo-
lated value. Lines are guides to the eye. (b) Long-range behavior
of the staggered spin-spin correlation function CðrÞ ¼ ð�1Þr �
hSxrSx0 þ SyrS

y
0 þ SzrS

z
0i obtained on L ¼ 16, 20, and 24 (U ¼ 0

only). Straight lines are representative power-law fits to the data:
green (dot-dashed) line L ¼ 24 at U ¼ 0, black (dashed) line
L ¼ 20 at U ¼ 4, and blue (solid) line L ¼ 20 at U ¼ 6.
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shown in the Supplemental Material [16]. To extract the
VBS order in the thermodynamic limit, we calculate
d2��ðLÞ ¼ D��ðk��Þ=N and extrapolate to the L ! 1
limit. As shown in Figs. 4(a) and 4(b), both quantities
vanish in the thermodynamic limit, implying the absence
of columnar VBS order in the intermediate phase.

In addition to the columnar VBS state, another compet-
ing order proposed in Ref. [22] is the plaquette VBS order.
This state is a coherent superposition of singlets formed by
4 spins located on corners of a plaquette. Given the lattice
sizes studied in this Letter, however, we are not able to
obtain a reliable thermodynamic estimation of the pla-
quette VBS order as a function of U.

A commonly adopted definition of a spin liquid is that: it
is a nonmagnetic Mott insulator, in which neither spin nor
lattice symmetry is broken. Based on this definition, our
numerical data presented in this Letter seems to suggest
an algebraic spin liquid ground state in the half-filled

SFHM [23]. However, the most unambiguous evidence of
a spin liquid is its fractionalized excitation [24]. Due to the
nature of our method, we are not able to directly measure
quantum properties of excited states. As we have mentioned
previously, it is possible to simulate the SFHM with optical
lattice experiment setups [14]. In such experiments, a direct
method of detecting a spin liquid would be measuring the
entanglement entropy (EE) [25]. Although EE does not
correspond to any physical observables, it has been proposed
that EE can be measured using quantum quenches [26].
In terms of the method, we note that although the half-

filled staggered-flux model does not have the fermion sign
problem, we deliberately keep the constrained-path ap-
proximation and calculate the ground state properties at
half filling. Our benchmark data show that the error appears
to be small when compared with exact answers, as shown
by the benchmark data in the Supplemental Material [16].
However, it is possible that the systematic error grows with
L. A recent exact QMCmethod, a linearized auxiliary fields
Monte Carlo technique, reports that the half-filled ground
state energy at U ¼ 4 is �0:859 96ð5Þ [27] per site, in the
thermodynamic limit. Our method, after boundary condi-
tion averaging, gives �0:8559ð4Þ [28], corresponding to a
0.47% error. By including this systematic error, we estimate
that the lower critical point, where charge gap opens, would
be pushed to U� 5:4� 0:1. In observable results such as
correlation functions, extensive tests [15,29] show that our
systematic error is small even at half filling [29] and does
not affect the physics of the numerical solutions.
To summarize, we have studied ground state properties

in the half-filled staggered-flux Hubbard model on a square
lattice. Charge and spin excitation gaps as well as spin and
dimer orders are extracted by means of the constrained-
path quantumMonte Carlo method. The system is found to
be a semimetal at U & 5:6 and an AF Mott insulator at
U * 6:6. In the region 5:6 & U & 6:6, our data suggests
that both AF and VBS orders are absent in the ground state.
Spin excitation in this region is gapless, a result that is
consistent with the calculated staggered spin-spin correla-
tion function, which shows power-law decaying behavior
at large distances.
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