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We explore the phase diagram of Ising spins on one-dimensional chains that criss-cross in two perpendicular
directions and that are connected by interchain couplings. This system is of interest as a simpler, classical
analog of a quantum Hamiltonian that has been proposed as a model of magnetic behavior in Nb12O29 and
also, conceptually, as a geometry that is intermediate between one and two dimensions. Using mean-field theory
as well as Metropolis Monte Carlo and Wang-Landau simulations, we locate quantitatively the boundaries of
four ordered phases. Each becomes an effective Ising model with unique effective couplings at large interchain
coupling. Away from this limit, we demonstrate nontrivial critical behavior, including tricritical points that
separate first- and second-order phase transitions. Finally, we present evidence that this model belongs to the
two-dimensional Ising universality class.
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I. INTRODUCTION

Dimensionality, along with order parameter symmetry,
plays a decisive role in the occurrence of phase transitions and
the critical exponents with which they are characterized [1].
Beginning with simple, regular geometries, critical properties
are now well-understood in more complex geometries in
which the dimensionality is more ambiguous, including diluted
lattices [2], fractal geometries [3], and networks with longer-
range interactions [4–8].

Recently, there has been interest in a further class of systems
of “mixed geometry” whose underlying structure consists
of two perpendicular collections of one-dimensional chains
that are then further connected to form a two-dimensional
framework. For example, it has been suggested [9] that an
appropriate model of magnetic phase transitions in one of
the niobates, Nb12O29, consists of one-dimensional chains of
localized (Heisenberg) spins and a further perpendicularly
oriented set of one-dimensional conduction electron chains.
These two types of spins reflect the presence of distinct Nb
cations with a 4d1 configuration, one of which exhibits local
moment behavior and the other being itinerant and Pauli
paramagnetic [10,11]. In this model, the electron spins on the
conducting nanowires are coupled to the Heisenberg chains by
a Kondo interaction on each site.

Similarly, in optical lattices [12], bosonic or fermionic
atoms can occupy higher, spatially anisotropic, px and py

orbitals that allow hopping, which is essentially just along
one-dimensional chains. Within a given well, atoms can
convert from occupying the px to occupying the py orbital,
thus coupling the perpendicular chains and providing a two
dimensional character to the system. Bosonic systems in this
geometry can exhibit exotic forms of superfluidity whose
condensate wave functions belong to nontrivial representations
of the lattice point group, with condensation accompanied by
unusual columnar, antiferromagnetic, and Mott phases [13–
16]. Models in which fermionic degrees of freedom in the two
orbitals have Hund’s rule type coupling have also been con-
sidered, and shown rigorously to exhibit magnetic order [17].

These examples share a common “1D × 1D” geometrical
structure in which one type of chain has degrees of freedom
that are coupled in the x̂ direction, while the degrees of
freedom of the other couple in the ŷ direction. An additional

interaction on each lattice site connects the two sets of chains.
Although considerable progress has been made in modeling
the niobates and p-wave bosons in optical lattices, in both cases
the quantum nature of the spins makes achieving a definitive
understanding of the critical phenomena quite challenging.
The goal of this paper is to examine a classical Ising model on
this type of lattice. We will show that the interchain coupling
is sufficient to promote long-range order at finite temperature,
and that the phase transitions can exhibit a rich variety of
behaviors including tricritical points.

II. MODEL AND METHODS

We consider the following model:

E = − Jx

∑

r

SrSr+x̂ − Jy

∑

r

TrTr+ŷ

− Jz

∑

r

SrTr − Jz′
∑

r

Sr (Tr+ŷ + Tr−ŷ)

− Jz′
∑

r

Tr (Sr+x̂ + Sr−x̂), (1)

which we will refer to as the crossed Ising chains model
(CICM).

Here Sr and Tr are Ising spins (i.e., they can have a value
of either +1 or −1) coupled into one-dimensional chains in
the x̂ and ŷ directions, respectively. These spins occupy a two-
dimensional, square, L × L lattice with periodic boundary
conditions. There is an S and a T spin on each of the N = L2

sites, and therefore 2N total spins in the system. Jz and Jz′

couple S and T spins on the same lattice site and near-neighbor
sites, respectively. The geometry of Eq. (1) is illustrated in
Fig. 1. For simplicity, and also because this choice is the
appropriate one for several of the physical realizations of
the CICM, we will set Jx = Jy = Jx,y = 1 and measure all
energies in units of Jx,y .

Initial insight into the phase diagram of this model is
obtained by considering T = 0 and minimizing the internal
energy, Eq. (1). Figure 2 shows the definitions of the
four ordered phases that can occur: ferromagnetic (FM),
ferromagnetic-prime (FM′), antiferromagnetic (AFM), and
antiferromagnetic-prime (AFM′). The phase diagram at T = 0

2470-0045/2017/96(4)/042108(9) 042108-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.042108


T. CARY, R. R. P. SINGH, AND R. T. SCALETTAR PHYSICAL REVIEW E 96, 042108 (2017)

S S

S S
T

T

T

T

x

y
z

Jx
Jy
Jz
Jz

FIG. 1. The geometry of the interactions in the CICM for four
sites is shown. This model is studied on an L × L square lattice with
periodic boundary conditions (in the x̂ and ŷ directions) containing
N (= L2) “S spins” and N “T spins” taking values ±1. There are
L parallel 1D chains of S spins in the x̂ direction and L parallel 1D
chains of T spins in the ŷ direction, illustrated by the blue (Jx) and
red (Jy) lines, respectively. There is an interaction between an S and a
T spin on the same site in the ẑ direction (Jz) illustrated by the green
lines. Finally, there is an interaction between nearest-neighbor S and
T spins (Jz′ ) that is illustrated by the gray lines.

is shown in Fig. 3. The CICM has the symmetry that changing
Jz → −Jz and Jz′ → −Jz′ changes the phase from FM →
AFM or AFM → FM, and FM′ → AFM′ or AFM′ → FM′.
If Jz and Jz′ are both positive or both negative, there will be

FIG. 2. The four ordered phases found in the CICM are defined.
Each pair of spins represents an S and a T spin on a single site
(i.e., coupled by Jz). In the ferromagnetic (FM) phase, all S and
T spins are aligned ferromagnetically. In the ferromagnetic prime
(FM′) phase, the S and T spins are aligned ferromagnetically on
each site and antiferromagnetically along the S and T chains. In
the antiferromagnetic (AFM) phase, the S and T spins are aligned
antiferromagnetically on each site and ferromagnetically along the S

and T chains. Finally, in the antiferromagnetic-prime (AFM′) phase,
the S and T spins are aligned antiferromagnetically on each site and
also along the S and T chains. There is spin inversion symmetry in
this model, so flipping all of the spins in any of these phases does not
change the phase.
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FIG. 3. The phase diagram for the CICM with Jx,y = 1 and T =
0 in the Jz′ vs Jz parameter space is shown. The line separating
the FM and AFM phases (where the internal energies are equal) is
given by Jz′ = − 1

4 Jz. The AFM and AFM′ phases are separated by

Jz′ = Jx,y

2 = 1
2 ; the FM and FM′ phases by Jz′ = −Jx,y

2 = −1
2 ; the

FM and AFM′ phases by Jz = −2Jx,y = −2; and the AFM and FM′

phases by Jz = 2Jx,y = 2. This phase diagram is consistent with the
observation that for Jz and Jz′ both positive or both negative, there is
no competition between phases. Additionally, the symmetry between
FM and AFM and FM′ and AFM′ when switching the signs of Jz and
Jz′ is evident.

no competition between ordered phases, and the model will
have relatively uninteresting features, namely a conventional
second-order phase transition between a high-temperature
disordered paramagnetic (PM) phase and a low-temperature
FM phase or AFM phase, respectively. However, if only one of
the interchain couplings is negative, there will be a competition
between ordered phases, and the most interesting physics will
result.

The total spin, Sr + Tr, on a site can take on the three
values, −2, 0, or +2, giving the CICM some similarity to the
two-dimensional square lattice Blume-Capel model [18,19],

E = −J
∑

〈ij〉
MiMj + �

∑

i

M2
i , (2)

which is a spin 1 generalization of the Ising model where
Mi = −1, 0, or +1. The choice Jz < 0 favors Sr = −Tr and
hence Sr + Tr = 0 so that the strength of Jz plays a role similar
to that of the vacancy potential � whose energy �M2

i can tune
the density of sites with Mi = 0.

The remainder of this paper is organized as follows. We
begin our discussion of Eq. (1) via a mean-field treatment.
The resulting phase diagrams, as in the case of the BCM, will
be shown to correctly predict certain qualitative features of
the CICM such as the presence of ordered phases, effective
Ising regimes in the large |Jz| limit, and tricritical points.
We then turn to a Monte Carlo (MC) approach, which
allows a more accurate quantitative determination of the phase
diagram. We use the standard single-spin flip Metropolis
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MC algorithm, supplemented by some multiple-spin flips.
The data are analyzed with standard numerical approaches,
including the use of the Binder fourth-order cumulant [20].
The results show that there are four ordered phases, each of
which becomes an effective Ising model in the large |Jz| limit
with unique effective couplings. Additionally, the presence of
tricritical points is confirmed. To provide further corroboration
for the nature of the phase transitions, we also employ the
Wang-Landau algorithm [21–23] to obtain the density of states
and the behavior of canonical distributions as a function of
temperature when passing through first- and second-order
phase transitions. We find that this algorithm is particularly
well suited for verifying the order of a phase transition and
therefore the existence of tricritical points. Finally, we use
finite-size scaling techniques to verify the universality class of
the CICM.

III. MEAN-FIELD THEORY

We solve Eq. (1) by replacing the two spin interactions with
a single spin coupled to a self-consistently determined average
spin value,

m1 ≡ 〈Sr〉, m2 ≡ 〈Tr〉. (3)

In the case of the FM′ and AFM′ phases, these order
parameters alternate in sign on the (bipartite) lattice.

The resulting implicit equations for the order parameters,
mFM = m1 = m2 and mAFM = m1 = −m2 (β = 1

T
and kB =

1),

mFM = sinh [4βmFM(Jx,y + 2Jz′ )]

cosh [4βmFM(Jx,y + 2Jz′ )] + e−2βJz
,

(4)

mAFM = sinh [4βmAFM(Jx,y − 2Jz′ )]

cosh [4βmAFM(Jx,y − 2Jz′ )] + e2βJz ,

are solved using Newton’s method. Equivalently, the mean-
field free energy of the CICM can be expanded in a power
series in the order parameter for both the FM and AFM
phases and the critical temperature for a second-order phase
transition determined by calculating the temperature where the
coefficient of the quadratic term in the free-energy expansion
vanishes. The implicit equations for the FM and AFM second-
order critical lines are as follows:

TC,FM = 4(Jx,y + 2Jz′ )

1 + e
−2Jz
TC,FM

,

(5)

TC,AFM = 4(Jx,y − 2Jz′ )

1 + e
2Jz

TC,AFM

.

Tricritical points are located by calculating the temperature
at which the quartic coefficient in the expansion of the free
energy vanishes,

Ttricritical, FM = −2

ln(2)
Jz,

(6)

Ttricritical, AFM = 2

ln(2)
Jz.

Combining this with the condition for intersecting the second-
order phase boundary, simple analytic expressions for the
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FIG. 4. A plot of the FM and AFM free energies at Jz′ = 0.1 and
T = 1.0 is shown. For Jz = −0.39, the minimum of the FM free
energy (thin blue solid curve) is lower than the minimum of the AFM
free energy (thin blue dashed curve) and therefore the system is in
the FM phase. For Jz = −0.40 the minimum of the FM free energy
(thick red solid curve) is greater than the minimum of the AFM free
energy (thick red dashed curve) and therefore the system is in the
AFM phase. If the global minima were to be at m = 0, the system
would be in the PM phase where the total magnetization is 0. This is
the analysis used to determine all of the first-order phase boundaries
in the mean-field theory phase diagrams.

coordinates of the mean-field tricritical points can be written
down,

Ttricritical point, FM = 4(Jx,y + 2Jz′ )

3
,

Jz,tricritical point, FM = −2 ln(2)(Jx,y + 2Jz′ )

3
,

(7)

Ttricritical point, AFM = 4(Jx,y − 2Jz′ )

3
,

Jz,tricritical point, AFM = 2 ln(2)(Jx,y − 2Jz′ )

3
.

To find the first-order phase boundary once the tricritical
point has been reached, simultaneous plots of the FM and AFM
free energy were made, and temperature or Jz was incremented
to find the point where the phase with the global minimum
changes (see Fig. 4).

For Jz′ = 0, the mean-field phase diagram (Fig. 5) shows no
tricritical point. Clearly, Jz′ is necessary for the onset of first-
order phase transitions. The AFM phase arises for Jz < 0, as
expected, since negative Jz antiferromagnetically couples the
S and T spins on shared sites. For Jz > 0, the FM phase arises.
The mean-field phase boundary separating the FM and AFM
phases at T = 0 where thermal fluctuations are nonexistent
agrees with the ground-state phase diagram in Fig. 3. The
MFT critical temperature is TC = 2 at Jz = 0 and Jz′ = 0,
as expected since the CICM decouples into independent 1D
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FIG. 5. The mean-field theory phase diagram for Jz′ = 0 and
Jx,y = 1 is shown. For these parameters, there is no tricritical point.
For Jz > 0, there is a second-order phase transition between a low-
temperature FM phase and a high-temperature PM phase. For Jz < 0,
there is a second-order phase transition between a low-temperature
AFM phase and a high-temperature PM phase. Also, there is a vertical
first-order phase boundary between the FM and AFM phases at Jz = 0
that extends up to T = 2, the MF critical temperature for the 1D
Ising model. In the large, positive Jz limit, this model becomes an
effective 2D Ising model with TC = 4(Jx,y + 2Jz′ ) = 4. In the large,
negative Jz limit, this model also becomes an effective 2D Ising model
with TC = 4(Jx,y − 2Jz′ ) = 4. The FM and AFM phase shapes are
symmetric about Jz = 0 only when Jz′ = 0.

Ising chains. For large |Jz|, the S and T spin pairs on each
site lose their independence due to the high-energy cost of
flipping only one of the spins in a pair. In this limit, the model
becomes an effective 2D Ising model with Jeff,FM = Jx,y +
2Jz′ and Jeff,AFM = Jx,y − 2Jz′ for positive and negative Jz,
respectively. This leads to the limiting values TC = 4 for |Jz|
large in Fig. 5.

In fact, this single “locked spin” Ising regime in the
large |Jz| limit occurs for all four ordered phases. However,
the effective couplings are different for each phase. In the
large, negative Jz limit, the AFM and AFM′ phases have the
following effective Ising couplings:

Jeff,AFM = Jx,y − 2Jz′ ,
(8)

Jeff,AFM′ = −Jx,y + 2Jz′ .

Meanwhile, in the large, positive Jz limit, the FM and FM′

phases have the following different effective Ising couplings:

Jeff,FM = Jx,y + 2Jz′ ,
(9)

Jeff,FM′ = −Jx,y − 2Jz′ .

This behavior is similar to that of the Blume-Capel model
(BCM), which also approaches an Ising limit for large negative
� that drives the density of vacancy sites Mi = 0 to zero.
However, our model does not approach the “vacant” lattice
limit of the BCM at large positive �, because even though
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FIG. 6. The mean-field theory phase diagram for Jz′ = 0.1 and
Jx,y = 1 is shown. For these parameters, there is no tricritical point.
For Jz > −4Jz′ = −0.4, there is a second-order phase transition be-
tween a low-temperature FM phase and a high-temperature PM phase.
For Jz < −4Jz′ = −0.4, there is a second-order phase transition
between a low-temperature AFM phase and a high-temperature PM
phase. Also, there is a vertical first-order phase boundary between
the FM and AFM phases at Jz = −0.4. In the large, positive Jz

limit, this model becomes an effective 2D Ising model with TC =
4(Jx,y + 2Jz′ ) = 4.8. In the large, negative Jz limit, this model also
becomes an effective 2D Ising model with TC = 4(Jx,y − 2Jz′ ) = 3.2.
A positive Jz′ shrinks the AFM phase and grows the FM phase as it
is increased in magnitude, as evidenced by comparing with the phase
diagram for Jz′ = 0.

Si = −Ti in the AFM and AFM′ phases, the individual nonzero
S and T moments still couple down their respective chains.
It is interesting, therefore, that, as we shall see, the tricritical
points that are driven by vacancies in the BCM are still present
in the CICM.

When Jz′ �= 0, the phase diagram loses its symmetry upon
changing the sign of Jz. As expected, for Jz′ = 0.1 (Fig. 6),
the AFM and FM phases meet at Jz = −4Jz′ = −0.4. Also,
for large, negative Jz, Tc = 4(Jx,y − 2Jz′ ) = 3.2 and for large,
positive Jz, Tc = 4(Jx,y + 2Jz′ ) = 4.8; as Jz′ > 0 gets larger,
the FM phase gets larger and the AFM phase shrinks. The
phase diagram is reflected about Jz = 0 for Jz′ = −0.1 (not
shown): the AFM region expands and the FM region shrinks.

Most importantly, the value of Jz′ determines whether or
not there is a tricritical point. For Jz′ = 0.0 and 0.1, there is
no tricritical point and all thermally driven phase transitions
between an ordered phase and the disordered phase are of
second order. However, for Jz′ = 0.3 (Fig. 7) there is a
tricritical point. The thermally driven phase transition between
the PM and the FM phase switches from second order to first
order. The FM tricritical point emerges when Jz′ >

Jx,y

6 = 1
6 ,

a result that follows from a detailed analysis of Eqs. (5) and
(7).
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FIG. 7. The mean-field theory phase diagram for Jz′ = 0.3 and
Jx,y = 1 is shown. For Jz � −0.7, there is a second-order phase tran-
sition between a low-temperature FM phase and a high-temperature
PM phase. For −1.1 � Jz � −0.7, there is a first-order phase tran-
sition between a low-temperature FM phase and a high-temperature
PM phase. This section of the phase diagram is separated from the
previous section by the green square tricritical point (located at T =
32
15 ≈ 2.13, Jz = −16 ln(2)

15 ≈ −0.74). For −1.2 � Jz � −1.1, there is
a low-temperature FM phase followed by a small higher-temperature
AFM phase and then, for higher temperatures, a disordered PM phase.
For Jz � −1.2, there is a second-order phase boundary between
a low-temperature AFM phase and a high-temperature PM phase.
Additionally, there is an approximately vertical first-order phase
boundary between the FM and AFM phases at Jz = −1.2. This
phase diagram is zoomed in relative to the other phase diagrams in
order to show the details of the tricritical point and first-order phase
boundary.

IV. METROPOLIS MONTE CARLO

To achieve more accurate quantitative results, the Metropo-
lis MC algorithm was implemented. We include moves that
flip a single S spin, a single T spin, a row of S spins, a column
of T spins, and an S and T spin simultaneously on a single site.
What we will call one sweep alternates between the following
five procedures: flipping every S spin (N total flips), flipping
every T spin (N total flips), flipping every row of S spins (L
total flips), flipping every column of T spins (L total flips),
and flipping every S and T pair (N total flips). To thermalize
the lattice, we perform 5 × 105 such sweeps of the lattice (i.e.,
105 sweeps of each type). We then perform another 5 × 105

sweeps of the lattice, making a measurement every 10 sweeps.
Flipping multiple spins at a time helps the system to break
out of metastable states and thereby makes the algorithm more
efficient. For example, if Jz is large and positive and a pair of
S and T spins both have values of +1, the probability of both
spins changing to −1 is very small if only single spin flips are
allowed. This is because of the large increase in energy that
would come from trying to change the value of one of them
first (i.e., making them align antiferromagnetically).
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FIG. 8. The Binder fourth-order cumulants for various lattice
sizes and for a second-order phase transition (solid lines) at Jz = −0.9
and a first-order phase transition (dashed lines) at Jz = −1.1. A
minimum below UL,FM = 0, which gets deeper as the lattice size
increases, is a signature of a first-order phase transition. The curves
intersect at a single critical temperature in both cases. In both cases,
at lower temperatures than the crossing, the order of the curves from
top to bottom is L = 20, 14, and 12, and finally L = 10. UL was used
to determine all of the critical points in the MC phase diagrams.

To calculate the critical temperatures, the Binder fourth-
order cumulant,

UL = 1 − 〈m4〉
3〈m2〉2

, (10)

where m is either mFM, mAFM, mFM′ , or mAFM′ , is calculated as
a function of temperature for various lattice sizes, L. Curves
for different lattice sizes have a common intersection point
at the critical temperature (TC), regardless of the order of the
transition [24]. Additionally, the behavior of the Binder cumu-
lant away from the crossing at TC can be used to distinguish
between first- and second-order phase transitions (see Fig. 8).
For second-order phase transitions, UL approaches the value
UL = 2

3 as the temperature approaches zero. For temperatures
above the critical temperature, UL approaches UL = 0, all the
while staying between these two values. For first-order phase
transitions, the Binder cumulant has the same limit values, but,
above the transition temperature, it develops a minimum that
dips below 0 and gets deeper for larger lattice sizes [24].

For Jz′ = 0, the MC phase diagram of Fig. 9 has the same
qualitative features as the mean-field phase diagram. In both
cases, there are two ordered phases at low temperatures, FM
and AFM, and a PM phase at high temperatures. The AFM and
FM phases meet, as expected, at Jz = −4Jz′ = 0. Additionally,
the MC phase diagram also contains the expected Ising regimes
at large |Jz|, that is, TC ≈ 2.269Jeff [25]. For large positive
Jz, this leads to TC ≈ 2.269(Jx,y + 2Jz′ ) = 2.269 and for
large negative Jz, TC ≈ 2.269 (Jx,y − 2Jz′ ) = 2.269. We can
estimate the error bars on the MC simulations by comparing
how close the MC data are to the exact value in the Ising
regime. This leads to error bars on the critical temperatures
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FIG. 9. The MC-derived phase diagram for Jz′ = 0 and Jx,y = 1
is shown. For Jz > 0, there is a second-order phase boundary
separating a low-temperature FM phase from a high-temperature PM
phase. The critical temperature increases as Jz increases and saturates
at TC ≈ 2.269(Jx,y + 2Jz′ ) = 2.269. For Jz < 0, there is a second-
order phase boundary separating a low-temperature AFM phase from
a high-temperature PM phase. Similarly, the critical temperature
increases as Jz decreases until it saturates at TC ≈ 2.269(Jx,y −
2Jz′ ) = 2.269. This phase diagram is qualitatively similar to the
MFT phase diagram with the same parameters, particularly in its
lack of a tricritical point. As expected, the critical temperatures were
overestimated in MFT.

of ±0.02. Another way of quantifying the uncertainty in the
values of the critical temperatures is to estimate the “spread”
in the crossings of the fourth-order Binder cumulants for the
various lattice sizes, since the crossings are not perfectly
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FIG. 10. Same as Fig. 9 except Jz′ = 0.1. The phase diagram is
qualitatively similar to the result of MFT, particularly in its lack of a
tricritical point.

0.0-0.4-0.8-1.2-1.6-2.0

2.0

1.5

1.0

0.5

0.0

FIG. 11. Same as Fig. 9 except Jz′ = 0.3. The phase diagram is
qualitatively similar to the result of MFT in most regards. However,
MC finds that a tricritical point, which is present only on the FM side
in MFT, is also present on the AFM phase boundary.

sharp. This measure also leads to error bars on the critical
temperatures of ±0.02.

Similarly, for Jz′ = 0.1 (Fig. 10) the MC phase diagram
agrees qualitatively with the mean-field theory phase diagram.
There is no tricritical point in either the mean-field theory
or MC phase diagrams, and the FM and AFM phases meet
at Jz = −4Jz′ = −0.4 in both cases. For large positive Jz, we
expect TC ≈ 2.269 (Jx,y + 2Jz′ ) ≈ 2.723 and for large negative
Jz, we expect TC ≈ 2.269 (Jx,y − 2Jz′ ) ≈ 1.815, which agrees
with the MC data.

Figure 11 shows MC results for Jz′ = 0.3. The FM and
AFM phases meet at Jz = −4Jz′ = −1.2, as in the MF phase
diagram, and there is a FM tricritical point at Jz = −0.9(1).
One important qualitative difference between the MF and MC
phase diagrams for Jz′ = 0.3 is that there is also an AFM
tricritical point in the MC phase diagram. The MF phase
diagram also has a small parameter window for −1.2 � Jz �
−1.1 where raising the temperature from the FM phase results
in passage through an intermediate AFM phase before the
disordered high-temperature regime is reached. We do not
observe this in the MC data.

Finally, in Fig. 12 the phase diagram for Jz′ = 1.0 is shown.
The FM and AFM′ phases meet at Jz = −2, as expected from
the ground-state phase diagram. There is no tricritical point for
this value of Jz′ , which shows that there is some intermediate
range between Jz′ = 0.1 and 1.0, where tricritical points are
present.

V. WANG-LANDAU SAMPLING

While the Metropolis MC algorithm is the most widely
used method of numerically calculating the thermodynamic
properties of classical spin models, there exist more sophisti-
cated alternatives. One is Wang-Landau sampling (WLS). In
WLS, the density of states (DOS) is determined using a MC
procedure. From the DOS, all of the desired thermodynamic
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FIG. 12. Same as Fig. 9 except Jz′ = 1.0. As for Jz′ = 0.0 and
0.1, there is no tricritical point, thus they appear to be restricted to
intermediate Jz′ ≈ 0.3.

properties can be calculated. The major advantage of WLS is
that the DOS is independent of temperature so that only one
simulation is needed to calculate thermodynamic quantities
at any temperature. Additionally, the DOS can be used to
calculate the unnormalized canonical distribution, P (E),

P (E) ∝ g(E) e−βE, (11)

for various temperatures from one simulation. This distribution
is another useful tool for distinguishing between first- and
second-order phase transitions as it has distinct behavior in the
two cases. For second-order phase transitions, the canonical
distribution is always a single peaked distribution that shifts
its average value as the temperature changes. For first-order
phase transitions, the canonical distribution is similarly a single
peaked distribution at temperatures well above and below
the phase boundary. However, it develops a characteristic
double peaked structure near the transition temperature due
to phase coexistence. The peaks are of equal height at the
transition temperature [26].

This doubly peaked canonical distribution was found for
our model, as is shown in Fig. 13, providing additional
confirmation of the existence of the first-order phase transition.
For Jz = −1.1 and Jz′ = 0.3, the peaks were found to be of
equal height at TC = 0.6173(2). The Metropolis MC data with
the same parameters gave TC = 0.615(5), which envelopes the
Wang-Landau value. This procedure confirmed all three first-
order phase transition data points (Jz = −1.3, − 1.1, − 1.0)
in the Jz′ = 0.3 MC phase diagram.

A clear and comprehensive detailing of the WLS algorithm
can be found in the literature [21–23]. However, a few specific
details of our simulations are worthy of mention. The energies
in our Wang-Landau simulation were not binned. In other
words, every unique configuration energy has its own data
point in the density of states. Also, windows were not used in
the sampling. The entire energy spectrum shown was sampled
in one simulation. Every 10 000 × 2N spin flips, the histogram
is checked for flatness. The flatness criterion used is that no
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0.2

0.0
-1700 -1600

Energy

FIG. 13. The canonical distributions for three temperatures
around a first-order phase boundary are shown (with Jz = −1.1 and
Jz′ = 0.3). The characteristic double peak behavior due to phase
coexistence is clear. At the transition temperature (TT ) (black data),
the two peaks are of equal height. The canonical distributions were
normalized by the constant k(T ) such that the maximum height of the
distribution is equal to 1. This simulation was performed on a size
L = 30 lattice.

individual energy is visited less than 80% of the average num-
ber of visits over all energies. When this criterion is achieved,
the modification factor, f , which was initialized to f = e, is
reduced (fi+1 = √

fi), the histogram H (E) is reset to zero,
and the process of spin flipping is continued. This algorithm
continued until f was less than e10−6

, at which time the density
of states converged to our desired level of accuracy. The Wang-
Landau algorithm calculates the relative density of states, and
therefore the density of states was normalized as follows:

ln[gnormalized(Ei)] = ln[gunnormalized(Ei)]

− ln[gunnormalized(EGS)]

+ ln[gnormalized(EGS)]. (12)

For the CICM, there are two ground states due to its spin
inversion symmetry.

VI. CRITICAL EXPONENTS

The CICM consists of Ising spins on one-dimensional
chains with interchain couplings that connect the system into a
two-dimensional lattice, and therefore we expect it to belong to
the two-dimensional Ising universality class in which the mag-
netization critical exponent is β = 1

8 , the correlation length
critical exponent is ν = 1, and the magnetic susceptibility
critical exponent is γ = 7

4 . To verify this universality class
for the CICM (away from the tricritical point), a finite-size
scaling analysis was performed. Plots of [L

2β

ν 〈m2
FM(t)〉] versus

(L
1
ν t) and [L

−γ

ν 〈χL(t)〉] versus (L
1
ν t) for various values of L

will collapse onto a single curve for the correct values of the
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FIG. 14. The data collapse of [L
2β
ν 〈m2

FM(t)〉] vs (L
1
ν t) for L = 40,

60, 80, and 100 using the two-dimensional Ising universality class
exponents is shown.

exponents β, ν, and γ [27]. We measured 〈m2
FM〉 and 〈χL〉

as a function of temperature for the CICM with Jz = 25 and
Jz′ = 0.3. For these parameters, TC = 3.63. This was used
to define the reduced temperature t = T −TC

TC
. Figures 14 and

15 show the results of this analysis. The data collapse nicely
over a broad range of temperatures. This provides a satisfying
consistency check to our expectation of the universality class
of the CICM.

Precisely at a tricritical point, the critical exponents are
known to take on different tricritical values [20]. We attempted
to measure the tricritical exponents at the tricritical point in our
model, but this proved to require a level of precision beyond the
scope of our work. However, we did find that when applying
the same finite-size scaling analysis that is detailed in the
previous paragraph, including using the same two-dimensional
Ising exponents, to a tricritical point in our model (Jz = −0.9

543210-1-2-3-4-5
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0.01

0.00

FIG. 15. The data collapse of [L
−γ
ν 〈χL(t)〉] vs (L

1
ν t) for L = 40,

60, 80, and 100 using the two-dimensional Ising universality class
exponents is shown.

and Jz′ = 0.3), there was a significant decrease in the degree to
which the data “collapsed.” Although inconclusive, this finding
is consistent with our expectation that there will be a change
in exponents at the tricritical point.

Finally, the critical Binder cumulant, U ∗, is the value
of the Binder cumulant at the critical temperature in the
thermodynamic limit. For the 2D square Ising model, it has
been shown that U ∗ = 0.610 69 . . . [28]. For Jz = 25 and
Jz′ = 0.3 in the CICM, our data show that U ∗ is somewhere
between 0.605 and 0.615, consistent with the known value
for 2D Ising universality. At Jz = −0.9 and Jz′ = 0.3 (the
approximate location of a tricritical point), our data have a
larger spread of possible U ∗ values, although it is clearly
less than 0.610 69. U ∗ at the tricritical point is in the range
0.50–0.55. We also measured U ∗ at the tricritical point of the
2D Blume-Capel model, and a similar range of values was
found, providing some evidence in favor of 2D tricritical Ising
universality.

VII. CONCLUSIONS

Using a combination of mean-field theory, Metropolis MC,
and Wang-Landau simulations, we have explored an Ising-
like model on a lattice composed of a 1D × 1D collection of
coupled chains. As is well known, 1D Ising chains with short-
range interactions do not exhibit finite-temperature ordered
phases. However, interchain couplings connect the chains into
a 2D framework that shows multiple ordered phases at finite
temperatures. The phase transitions between the ordered and
disordered phases can be of first or second order, as evidenced
by the behavior of the Binder fourth-order cumulants and the
canonical distributions. The existence of tricritical points in the
phase diagram depends on the value of Jz′ . According to the
MC simulations, for Jz′ = 0.1 and 1.0 there are no tricritical
points, but for intermediate Jz′ = 0.3 there are tricritical points.

It would be interesting to see if the Nb12O29 materials can
be tuned between first- and second-order transitions by varying
pressure, doping, or other parameters, thus giving rise to novel
realizations of tricritical systems.

In some materials that exhibit this 1D × 1D geometry, the
quantum-mechanical nature of the degrees of freedom may be
crucial to the observed phenomena. For example, in the optical
lattice case, the focus is on the occurrence of Bose-Einstein
condensation at finite momentum, and in a pattern of orbitals
that alternates as px ± ipy on the two sublattices. Our work
shows that even at the classical level, these crossed-chain
systems exhibit complex phase-transitions and crossovers.
Future work could address the additional nontrivial physics
that arises when the phase transitions are driven to T = 0,
giving rise to exotic quantum phase transitions. Additional
future work could study the critical and tricritical exponents
of this model with greater precision and breadth.
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