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First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array
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We apply a first-order reversal curl@ORQ diagram analysis to a perpendicular nickel nanopillar array. We
find that the FORC diagram signature of this system consists of a two-branch “wishbone” structure. Two
distinct negative regions are also observed, along with a prominent reversible ridge. The objective of this paper
is to find a qualitative physical understanding or interpretation of these features. To accomplish this, we employ
an interacting hysteron model. We find that a collection of symmetric hysterons with distributed coercivities
and antiparallel mean field can account for the wishbone signature and one of the negative regions. By
employing curvilinear hysterons, we can account for the reversible ridge and the other of the negative regions.
Through a comparison of modeling and experimental work, we obtain a quantitative estimate of the dipolar
interaction strength.
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I. INTRODUCTION Il. REVIEW OF FORC DIAGRAMS

q f sinale d . h b A FORC diagram is generated from a collection of first-
Patterned arrays of single domain nanomagnets have be@pyar reversal curvedORCS, such as the one illustrated in

proposed as candidates for high-density perpendicular mags, 1 The generation of a FORC is preceded by the satura-
netic rgcordmg me‘?"é.‘-A” undgrstandmg of the magnetic ion of a system in a positive applied field. The field is then
properties of the individual particles, as well as the nature Ofowered to a reversal fieltl,, and a FORC is the magneti-

. : r
the interactions between them, has been the goal of receplyjo cyrve that results when the applied field is increased

experimental and theoretical studfes. back to saturatiof The ma N e
; : . . gnetization at the applied fiett}
First-order reversal cur@FORQ diagram8 may provide on the FORC with reversal field, is denoted byM(H, ,H,).

a useful tool for the characterization of patterned perpendicu.i.he FORC distribution is defined as the mixed second de-
lar magnetic media. FORC diagrams are based on the Procgs -tive:

dure described by Mayergoyz for identifying the Preisach
distribution of a classical Preisach systénm a FORC 1#M(H,,H,)
diagram analysis we treat this same procedure as simply a p(HHy) = T2 GHH. (1)
type of measurement, which can be performed on any mag- e
netic system regardless of whether that system is consisteMfe employ FORC datasets which have a uniform field spac-
with the classical Preisach model. On a FORC diagram, eaciig Hsp in both the applied and reversal fields. In order to
magnetic system exhibits a “signature” which containsPerform the second derivative in E(l) on a dataset, we
detailed information about that system’s magneticEmploy a polynomial fit on a local neighborhood consisting
properties10-16 of a square with five data points on each Sideor the pur-
Here we look at the FORC diagram signature of a perpenPoses of plotting a FORC distribution, it is convenient to
dicular nickel nanopillar array. Our objective is to develop achange coordinates fronfH,,H;} to {H.=(H,—H,)/2,Hy
qualitative physical interpretation of this signature and its=(Ha+H,)/2}.
features. We are also interested in what physical quantities Let us consider the FORC distribution in the simple case
can be extracted from the FORC distribution. of the “hysteron”s shown in Fig. 2. A hysteron is a math-
This paper is organized as follows: After a review of ematical construction which generates a square hysteresis
FORC diagrams, we report measurements of the FORC dideop in an applied fieldd. The half-width and offset of are
gram signature of a perpendicular nickel nanopillar array. Weeferred to as its coercivity and bias, denotedhgyand hy,
then show that a simple hysteron model with distributed covespectively. A hysteron with zero bias is referred to as a
ercivities and a negativ@antiparalle]l mean interaction field symmetric hysteron. The value sefdepends on the applied
can account for the basic qualitative features of this signafield history in the following way: If we let the applied field
ture. We next show that some of the finer features of thidegin atH=c, thens will start at +1;s will switch to -1
signature can be accounted for by replacing the mean fieldheneverH falls below (-h;+hy), and will switch back to
with a “dipolar” interaction field, and by introducing disorder +1 wheneveH rises aboveh.+h,). The FORC distribution
into the interactions. Finally, we augment our model by in-of the hysterons is simply a point Diracé function at the
corporating reversible magnetization through the use of cureoordinatesH.=h, and H,=h,. This is the motivation for
vilinear hysterons. By fitting our model to experimental data,referring to these as the coercivity and bias axis. Given an
we obtain a quantitative measure of the interaction strengthssemblage of symmetric hysterons with a distribution of
in our sample. coercivitiesf(h,), one will obtain a FORC distribution of the
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FIG. 1. A first-order reversal curvéFORQ is acquired after 7 < 1

saturating the sample in a positive applied field. The applied field is

lowered to a reversal fleIEHr. A I_:ORC_: is the magnetization curve FIG. 2. A hysterors with coercivity h. and biash,,. A hysteron

that results when the applied field, is increased back to satura- \yith zero bias is said to be symmetric.

tion. The magnetization at the applied fight} on a FORC with

reversal fieldH, is denoted byM(H,,H,). In this paper, we will be looking at a magnetic media
which is a candidate for perpendicular magnetic recording.

form p(He,Hp)=8(Hp)f(h), which is a delta function S_efqrbe dpmgfso, it may t_)e wo(rj'ghwhlledtc_) cohnS|d|((ajr the I;ORC

“ridge” on theH,=0 axis. istribution of a magnetic media used in the older and sim-

In general, the magnetic response of a material is a CorF_)Ier longitudinal recording technology. The sample we have

volution of reversible and irreversible magnetizations. As itChosen is a Sony High Density floppy disk, which contains a

has just been described, a FORC distribution does not CarS:I_lspersmn of fine particles in a polymer film. We use the case

ture the contribution of a reversible magnetization. Howevermc this floppy disk sample to illustrate some important ideas

it has been shown that a reversible magnetization can big FORC diagram analysis which will prove useful in the

captured be means of extended FORC#n extended Study of our nanopillar array sample.

FORC is defined as _ In Fig. 3(@ we show the FORC dlstrlbutlon_of the Sony
disk sample. The measurements were done in the plane of
ox M(HgH,) if Hy=H,, the disk. The magnetization of the FORCs were normalized
M&(Ha,H,) = MH.H) i Ho<H, (2) by the saturation magnetization before calculating this distri-
ro B ir a r

bution. A legend for the contour shadings is shown above the
When the FORC distribution is calculated with the extendeddiagram. Max denotes the value of the FORC distribution at
FORCs in Eq.(2), then one obtains a “reversible ridge” on its “irreversible” peak located at aboht;=90 mT. Note that

the H.=0 axis which is given by p goes to zero at the right-hand boundary of the diagram.
1 IM(H,H,) The shading at this boundary correspondste0; lighter
p(He=0,Hp) = =8H) lim —— ) shadings represent negative regionspofThe “reversible”
2 Ha—Hy dHa H,=Hy, ridge in Fig. 3a) appears as a dark vertical stripeH=0.

T . . For a better look at this ridge, we plot a horizontal cross-
The derivative in Eq(3) is the slope of the FORC with otion atH,=—5 mT in (b) and a vertical cross-section

reversal fieldH,=Hy where that FORC is joined to the major throughH,=0 in (c)
. .. . . c .
hysteresis loop. This is equivalent to the reversible suscepti- If temperature and interaction effects are ignored, then

bility on the descending major hysteresis loop at applied fieldy,;q ; :
LY . ; particulate system can be treated to a rough approxima-
Hp. The FORC distribution with the extended FORCS inyq, a5 5 collection of square hysterons. In this simple treat-

Eq. (2) captures the entire magnetic response, so that thl‘i"'1ent, we would expect the FORC distribution due to the

total weight ﬁ7°f the distribution equals the saturationgq, are hystersons to consist of a sharply peaked horizontal
magnetizatiort, . . L ridge on theH,=0 axis. But in Fig. 83) we can see that the
If a system contains a reversible magnetization of the‘irreversible" peak at abouti,.=90 mT actually has consid-

si_mplt_a formMe,(H), the_n thig rev_ersible magne_tizgtioq will erable vertical spread.e., spread in the bias distributiprit
give rise to a delta function ridge in the FORC distribution of o« peen shown experimentally that this spread increases

the form with an increasing concentration of particfe4® This sug-
1 dMe,(Hp) gests that the spread in the bias distribution can be attributed
p(HCaHb)zég(Hc)T- (4)  primarily to dipole interactions, and that the amount of
b

spread can be used as a measure of the interaction strength in
More generally, however, the reversible magnetization willthis type of media.

be coupled to the irreversible magnetization. This coupling The reversible magnetization can be incorporated into this
implies that the “reversible magnetization” may not be glo-simple theoretical treatment by adding a reversible magneti-
bally reversible. As a result, the “reversible magnetization”zation of the simple fornM,¢,(H). In this form, the revers-
may actually contribute features to the FORC distributionible and irreversible magnetizations are decoupled. But in a
which are located off theH.=0 axis. This effect will be more realistic treatment, the reversible and irreversible mag-
demonstrated by the particulate magnetic media example waetizations would be coupled. For example, if we treat these
consider next. particles as Stoner-Wholfarth-type particles, then the slope
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CTTTTTTT g As described later, we will find a similar negative valley

0 in the FORC distribution of our nanopillar array.
(a) Max A more detailed analysis of the FORC distribution in Fig.
3(a) shows that the spredde., standard deviatigrin bias is
actually greatest at lowd, and vanishes toward higH,,

0 resulting in the high coercivity “tail” seen in Fig(&.%° This
o behavior can be attributed to “completion symmetry” which
E can be described in the following manner: Let us suppose
2 that in some neighborhood of this particulate media, there is

one particle which is always the last to switch into the direc-
tion of the applied field. It can be said that this particle “com-
-100 pletes” the reversal of its local neighborhood. Let us refer to
this particle as a “completion particle.” The interaction field
experienced by a completion particle when it switches posi-
tive is approximately equal and opposite to the interaction
field it experiences when it switches negative. Because of
this symmetry, a completion particle behaves as if it has little
or no bias. The decreasing bias spread toward latgén
Fig. 3(@ has been attributed to particles which behave like
atH. = -5mT completion particles. As one proceeds toward high the
b completion symmetry just described forces the distribution’s

bias to approach zer§.

The same completion symmetry has been found in the
Edwards-Anderson spin glaggEASG).'* The EASG is an
> Ising model with nearest-neighbor random interactions, dis-
0 100 He (mT) 200 tributed around zero, thus having an equal number of ferro-
magnetic and antiferromagnetic bonds. In the FORC distri-
bution for the EASG, a sharp ridge has been found ortthe
axis (i.e., zero biagat high coercivity. This ridge is due to
particles which consistently are, the last in their local neigh-
borhood to switch into the direction of the applied field, i.e.,
N completion particles. In the case of the particulate media
i discussed above, since the interactions are long range dipo-
lar, completion symmetry is not an exact relationship. As a
result, its effect is somewhat subtle. By contrast, since inter-

0 100 He (mT) 200

p (emu/mT 2)

(c) p (emu/mT 2)

A

< 0 actions are short range in the EASG model, completion sym-
200 -100 H, (mT) 0 metry can be exact. As a result, the ridge on ltheaxis of
the Edward-Anderson spin glass FORC distribution is quite
dramatict4

FIG. 3. (@) A FORC diagram for Sony high density floppy disk . . .
sample. In the legend for the contour shading, Max denotes the Completion symmetry is a common theme in many FORC

value of the FORC distribution at its “irreversible” peak located atdistributions. As described below, we will find the effect of
aboutH.=90 mT. A prominent reversible ridge appears onthe ~cOmpletion symmetry in the FORC distribution of our nano-
=0. Note that the high density of vertical contour lines near thePillar array.
H.=0 axis makes the shading there appear darker than it actually is.
A negative region occurs adjacent to the reversible ridge at about
H,=—-85 mT. The shape of the reversible ridge is conveyed by the
two cross sections ifb) and(c). In (b) we plot a horizontal cross The sample in this study was an array of Ni pillars with
section passing though the irreversible peakigt-5 mT. In(c)  diameter 92 nm, height 250 nm, and period 200 nm. The Ni
we plot a vertical cross section through the reversible ridge ajg polycrystalline with a grain size of 10 to 20 nm. A scan-
Hc=0. ning electron micrograph is shown in Fig. 4. The sample was
made by interference lithography and electrodeposition, in a
(or susceptibility of their hysteresis loops near the negativeprocess described previoudlgnd was made simultaneously
switching field is greater on the top branch than on the botwith the sample shown in Fig.(}) of Ref. 7. According to
tom (except in the specific case of a particle whose easy aximagnetic force microscopy, each pillar constitutes a mag-
is aligned with the applied field, in which case the hysteresisietic single domain with easy axis parallel to the long axis,
loop is just a square logpThis difference in slope between i.e., perpendicular to the plane of the substrate.
the top and bottom branches implies that the reversible and A set of 140 FORCgHg,=1.5 mT) was measured with a
irreversible components are coupled, and it leads directly t®rinceton Measurements Alternating Field Magnetometer as
the negative valley located in the lower part of Figa)37?°  shown in Fig. %a). Measurements were done perpendicular

Ill. EXPERIMENT
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FIG. 4. Scanning electron micrograph of pillar sample.

to the substrate. The magnetization was normalized by the
saturation magnetization. The FORC distribution generated
from this data is shown in Fig.(B). Again, Max denotes the
value ofp at the “irreversible peak,” which is located in the
case at abouH.=23 mT, H,=20 mT. A large reversible
ridge can be seen on the.=0 axis. The most prominent
feature of the FORC distribution, aside from the reversible
ridge, is a two branch “wishbone” structure. The vertical
cross-section through this ridge is shown in Fi¢c)5Two
negative “valleys” can be also be seen in Figo)50ne at
high coercivity just below théd,=0 axis, and another adja-
cent to the reversible ridge.

In the following sections we develop a qualitative under-
standing of the physical mechanisms which give rise to the
features of this measured FORC signature.

IV. MEAN FIELD MODELING

_ -80 60 -40 -20 20 Hp(mT)
We next show that the wishbone structure of the FORC

signature in Fig. &) can be qualitatively accounted for Us- i, 5. (a) The first-order reversal cun(&ORO data for nickel

ing a interacting hysteron model with a negati@atiparal- pijar sample. To make it easier for the eye to resolve individual
lel) mean field and distributed coercivities. Let us begin with¢yryes, only 70 of the 140 measured FORCs are shéinThe

a collection ofN square and symmetrizero biag hysterons.  FORC distribution generated from this data. Max denotes the value
The state of théth hysteron is denoted kg/, which can take  of the distribution at the “irreversible” peak located at abslgt
values of £1. The pillars in this array do not have a perfectly=23 mT,H,=20 mT. On theH.=0 vertical axis is a sharply peak
uniform shape and size; they also likely contain a high dentidge due to reversible magnetizatits). The vertical cross section
sity of defects, vacancies, and inhomogeneities. Therefore through the “reversible” ridge dt.=0 as a function oHy,.
distribution of coercivities is expected. The coercivity of the

ith hysteron is denoted K. The distribution of coercivities Hint= — JM (6)

is denoted byf(h,). The total normalized magnetization of ’

th tem is gi b . . . L
© system is given by wherelJ is the magnitude of the total interaction field seen by

the hysterons in the saturated state. The total field is the sum
M =2 s/N. (5)  of the externally applied fieldd and H™. In our algorithm

for calculating FORCs, the applied field was initially
Since the magnetization of the nickel pillars is dominantlygiven a large value and thg were all set to +1. TheH is
oriented perpendicular to the plane of the substrate, then tHewered in small “field steps”. To obtain robust numerical
dipolar interaction is antiparallel to the direction of the mag-results with interacting systems, the size of the field steps
netization. In this section we will represent this interactionshould be much smaller than the width of the coercivity dis-
by a mean interaction field written as tribution. Note that a “field step” is distinct from a “field
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FIG. 6. The FORCs and the FORC distribution of a collection of hysterons with mean field intera¢ioasd (b) a narrow Gaussian
coercivity distribution andl=21.1 mT; a broader Gamma distribution witk0 [(c) and(d)] and withJ=21.1 mT[(e) and(f)]. Only 70 of
the 140 calculated FORCs are shown(@ (c), and(e). Many of these FORCs coincide and cannot be distinguished in this plot.

0 20 40 60 80 0 20 40

spacing”. “Field spacing” refers to the spacing between then analytical derivation of this same result. Next, we suggest

data points in a FORC dataset. Each field spacing is divided qualitative explanation for this vertical ridge.

into Ng; field steps. Assume that the hysterons are ordered with ascenrging
After each field step, the values of tiseare updated in so thathf,;>hf. Then the lowest coercivity in the collection

this fashion: Ifs=1 and is equal toh§ and the highest coercivity is denoted hfy. As

the reversal field is lowered from saturation, the first hys-

HM+H < -hf, (7)  teron to switch negative is=1, and it will switch down at
H,=-h{+J (since the magnetization i9.1f the applied field

thens; is updated to -1; i =-1 and begins increasing at this reversal field to obtain a FORC,
then thei=1 hysteron switches positive Bi,=h]+J (where

h' < Hint4+ 4, (8) we have assumed that the switching of one pillar produces an

infinitesimal change irM). The combination of these two

thens is updated to +1. In our algorithm, the valueldft  switching eventga negative switch ath{+J and a positive
used in this updating is obtained from the state of the systerawitch ath{+J) contributes to the FORC distribution B,
at the previous field step. In this manner, the descending—-J andH.=h, which corresponds to the upper endpoint of
hysteresis loop is calculated down to a reversal fi¢)ldTo  the vertical distribution in Fig. @).
obtain a FORC, we begin incrementing the field starting Similarly, as the reversal field is lowered from saturation,
from this reversal field and update the hysterons in a similathe last hysteron to switch negative iisN at H,=-h§—J
fashion. (where the magnetization is near negative saturation when

It is instructive to first look at this mean field model in the the last hysteron switches negadivé the applied field be-
case of a very narrow coercivity distribution. We féh.) be  gins increasing at this reversal field, then tkel hysteron is
a Gaussian with mean 27 mT and standard deviatiotthe first to switch positive aitl,=h]+J. But since the coer-
0.027 mT, and we le#=21.1 mT. In all the numerical cal- civity distribution is narrow, then to a good approximation
culations of this paper, we l&1=160,000N,=150, and we we can approximate this pair of negative and positive switch-
calculate 140 FORCs for each diagram. The numerically caling fields asH,=—(h,)—J andH,=(h,)—J, respectively. This
culated FORCg¢H,,=1.3 and FORC distribution are shown pair of switching events contributes to the FORC distribution
in Figs. a) and @b). The FORC distribution shows a nar- in H¢,Hy coordinates aH.=(h,) and Hy,=-J. This corre-
row and vertically elongated ridge. In the Appendix we givesponds to the lower endpoint of the vertical distribution in
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Fig. 6(b). Hence, we have an understanding of the location of (a)
the two endpoints of the vertically elongated distribution in 20
Fig. 6(b).

We next consider a system of hysterons with a broader
coercivity distribution. We will use a gamma distribution of 0
coercivitieg! of the form Hp

f(he) = b 2e "PhHT (). 9 -20

In this paper, we will lee=10.1 mT ando=2.97[which has
a peak ata—1)b=27 mT]. The motivation for these numeri- -40
cal values ofa andb is that, as shown below, they give us a

good fit to the experimental data in Fig(bh. The FORCs 0
were numerically calculated with=0, as shown in Fig. @).

The resulting FORC distribution in Fig.(@ consists of a (b)
horizontal ridge on thed,=0 axis. If the field spacings of
this dataset were made finer, this ridge would approach the
form 8(H,)f(He) (as mentioned in Sec.)llWhen the inter-
action strength is increased d&=21.1 mT in Figs. €) and

6(f), the FORC distribution forms a wishbone structure simi-
lar to that in the experimental data of Figlbh A negative I"b
region can be seen just below tHg=0 axis at high coerciv-

. T ; . . . . -2
ity. A similar negative region is seen in the experimental 0
data.

To summarize our numerical results so far, a collection of 40

symmetric hysterons with distributed coercivities with a
simple antiparallel mean interaction field generates a FORC
distribution with the same basic “wishbone” signature as our
nanopillar array sample. The remainder of this paper refines
this basic result by, first, introducing more realistic “dipolar”

int i ’ d tting disorder into the int i . FIG. 7. The calculated FORC distribution of a 2-D array of
Interac _|ons, secorj » Pu |.n_g Isorder nto the interac Iorlshysterons with gamma distribution of coercivities and local anti-
and, third, employing curvilinear hysterons.

. . _parallel interactions(J=21.1 mT). Two types of interactions
Before doing that, however, we suggest the fOIIOngwere used. In@), a 3X 3 local interaction neighborhood with uni-

qualitative explanation for the upper branch of the wishbongqm, coupling[see Eq.(10)]. In (b), “dipolar” interactions with a
pattern in Fig. &). Let us refer to FORCs which have rever- 11x 11 interaction neighborhodgee Eq(11)].

sal points near positive saturation as “upper” FORCs. Simi-

larly, we will refer to the FORCs which start from near nega-

tive saturation as “lower” FORCs. On the upper FORCs, the Hint = _ 22 s, (10)

last hysterons to switch positive are low coercivity hysterons. ' 83x3

But, on the lower FORCs, the last hysterons to switch posi-

tive are high coercivity hysterons. Thus, the applied fieldwhere this sum does not include thi pillar itself. The
necessary to return the system to positive saturation becomesctor of 8 in the denominator is chosen because each hys-
larger as the reversal field is lowered. This effect can be seeron interacts with eight neighbors. It is the analog of the
in the FORCs of Fig. @). The point where the FORCs re- 1/N in Eq. (5) in the mean field interaction case. We calcu-
turn to positive saturation is “pushed” out to higher fields asated the FORC distribution with a grid of size 48@00 and
the reversal field is lowered. This is qualitatively the cause ofyith J=21.1 mT. As seen in Fig.(@), the resulting distribu-

0 20 40 60 80
H g (mT)

the upper branch of the wishbone in Figf)6 tion now has two distinct peaks: one prominent peak in the
upper left of the diagram and another weaker peak at high
V. DIPOLAR INTERACTIONS coercivity on theH,=0 axis. We next suggest explanations
for these two peaks, starting with the upper left peak.
Looking at the experimental FORC diagram in Figh)5 As the reversal field is lowered from positive saturation,

it can be seen that the upper branch has two distinct peaktose hysterons which switch negative at the upper reversal
We next show that this two-peak structure arises when wéields(i.e., near positive saturatipwill be dispersed through
consider non-mean-field forms for the interactions. the system. Because of the locality of the interaction field in
Let us consider a 2-D square array of hysterons with &q. (10), these hysterons will seldom interact with one an-
uniform coupling in a local neighborhood about each pillar.other. Hence, they will all see the same interaction field
This local neighborhood consists of nearest and next-nearegthen they switch negative. When these hysterons switch
neighbors, i.e., a & 3 square about each pillar. The interac- back to positive on the upper FORCs they will still see this
tion field at theith particle becomes same interaction field. Hence, those hysterons which switch
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negative at an upper reversal fields will all have the same

bias; they will also generally be low coercivity hysterons. 20
The result is a horizontal ridge &t,=J and smallH..

The high coercivity peak in Fig.(@ can be explained by (a)
the “completion symmetry” described in Sec. Il. We propose 0

that a certain fraction of the pillars in this sample consis-
tently are the last pillars in their local neighborhoods to

switch into the direction of the applied field. As discussed in -20
Sec. Il, the interactions will not give any bias to these H
“completion pillars”. This, we suggest, accounts for the high b
coercivity peak on théd; (i.e., zero biasaxis in Fig. 1a). -40
We consider next interactions with a rf/dependence,
which we will refer to as “dipolar” interactions. In order to
make our numerical calculations practical, we have restricted 20
this interaction to a local X 11 neighborhood centered
around each hysteron. The interaction field is written as (b)
. s 0
H'=-32> 3/ 2 1, (11)
11x11 Tjj 11x11
wherer;; is the distance between theandj hysterons, and -20
where this sum does not include ttth pillar itself. We cal- Hb
culated the FORC distribution using Ed.1) and again with -40

J=21.1 mT. It can be seen in Fig.y that with a 13
interaction this model behaves much as it did with the uni-
form next-nearest neighbor interaction in Figa)7

20
VI. DISORDER (C)

In the modeling results so far, we have shown that the 0
wishbone structure seen in experiment can be accounted for
with a simple mean field model and with distributed hysteron
coercivities. When the mean field is replaced with dipolar -20
interactions, the upper branch of the wishbone develops two Hb
distinct peaks at opposite ends. However, the magnitude of
the upper peak is much more pronounced in the calculated -40
FORC diagramFig. 7(b)] than in the experimental result
[Fig. 5(b)]. As we show next, when disorder is introduced 0 20 40 60 80
into the interactions, this peak is smoothed and its magnitude Hc(mT)
is reduced.

To justify the introduction of disorder, we note that the FIG. 8. The calculated FORC distribution with “dipolar” inter-
pillars in the array do not have precisely uniform size oractions and disorder. A gamma distribution of coercivities is used
shape, and that since each pillar contains a number of nick@ndJ=21.1 mT. In(a), a random term is inserted into the coupling
grains, their microstructure is nonuniform. Hence, the couWith 0;=0.35[see Eq(12)]. In (b), a random bias field is inserted
pling between pillars will not be perfectly described by a at €ach hysteron site with,=0.076[see Eq(13)]. In (c), a random

dipolar 143 expression. Therefore, let us introduce disorderP!as field and a random term in the coupling are combined, with
into the interactions by writing 0p=0.049 ands;=0.24[see Eq(14)]

Ht=_3 > (1 +o03Ri)s; S (12) QUe to thg fagt that the completion §ymmetry discussed ear-
i ot rﬁ T lier remains intact even with the disorder in Ed=2). To

reduce the high coercivity peak, we must break this comple-
whereR,; is a normally distributed random number with stan- tion symmetry. One possible physical mechanism that would
dard deviation 1 and mean ze(; is fixed for a giveri and  accomplish this is a random bias field. A random bias field
i). The degree of disorder in EQL2) is governed byr;. We  could arise if some spins of the system are frozen into spe-
calculated the FORC distribution withr;=0.35 and again cific directions at the energy and time scales considered here.
with J=21.1 mT. As seen in Fig.(8), the magnitude of the Such freezing might arise from high local crystalline or
upper peak on the upper branch has been reduced, and is ne@ape anisotropies, and would give rise to an effective ran-
in better agreement with the experimental data. dom bias field.

However, with the upper peak reduced, we can now see We can rewrite the interaction field with a random bias
that the high coercivity peak in Fig(® is too large. Thisis field as
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11x11 ' 11x11

H:nt:—J(O'bRi"' 2 %/ 2 r3>’ (13)
ij

where gy, governs the degree of disord@R; is fixed for a

given i). When we recalculate the FORC distribution with
0,=0.076 andJ=21.1 mT, as seen in Fig.(®, the high |
coercivity peak is gone. Hence, only a small random bias 2t | N

field is required to achieve the desired result.
Finally, we combine these two types of disorder,

H:nt:_J(UbRi"' 2 (:I'-F—O-f'l)_sl/ 2 ra),
11x11

11x11 fj

(14)

and we recalculate the FORC distribution witfy=0.049,
03=0.24, andJ=21.1 mT, as seen in Fig.(®. With this

combination of disorder, the magnitudes of the two peaks on 20
the upper branch occur in approximate agreement with the Hb
experimental data of Fig.(B). 0

VII. CURVILINEAR HYSTERONS -20

The nickel pillars in our sample are oriented perpendicu-
lar to the substrate and aligned with the applied field. If they -40
behaved as Stoner-Wohlfarth particles, then they would have
no reversible magnetization. But micromagnetic calculations
show that nickel pillars of the size in our sample have
“flower” remanent states, and that their remanent magnetiza- 0
tion measured in units of the saturation magnetization is less
than 17 This indicates that these pillars have some reversible
magnetization. Furthermore, the experimental FORC distri- A
bution in Fig. §b) exhibits a substantial reversible ridge. (C)
Therefore, we next incorporate a reversible magnetization
into our model by replacing the square hysterons with curvi-
linear hysterons. Curvilinear hysterons have been previously

used in Refs. 22 and 23.

The magnetization of a curvilinear hysteron with coerciv-
ity he can be represented a4 s,H,h.], whereH is the ap-
plied field ands=+1 is the state of a symmetric square hys-
teron with the same coercivith.. For our numerical
calculations, we require a functional form fef[s,H,h.].

PHYSICAL REVIEW B 71, 134407(2005
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However, the magnetic reversal of these pillars is sensitive to Hb(mT)
irregularities in their shape, to crystalline imperfections and
surface roughness, and to oxidation state. All these factors g, g, (a) The curvilinear hysterons superimposed upon the

make an analytical or numerical solution for the hysteresis Ofjistribution of coercivities(b) The numerically calculated FORC
these pillars problematic. Therefore, we have used a phejistributions with “dipole” interactions and curvilinear hysterons.
nomenological functional form for our curvilinear hysterons (c) The vertical cross section through the reversible ridge of the
which results in good agreement between experiment andORC distributions aH,=0. The dotted line is from the experi-

data. This functional form is
s”[s,H,h] = s+ (1 - TanK0.1061. - 4))3
x {0.1§ TanhH/35.1) - s]
-s0.375 Max0,(27.0 -sH)/(27.0 +h,) 1>}.
(15

mental data in Fig. &) for comparison.

ponent to decrease with increasing Second, the term con-
taining “Max” results in a rapidly increasing curvature as the
discontinuous jump is approached. These two properties can
be seen in Fig. @), where we plot curvilinear hysterons of
this functional form for several values bf, and where these
hysterons are superimposed on the gamma distributidn of

This functional form has two notable properties which wedescribed earlier.
have found improve the agreement to data: First, the factor With curvilinear hysterons, the total magnetization of an
[1-TanH0.106h.—4)] forces the size of the reversible com- interacting system becomes
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M = > s%[s,H + H™ heJ/N, (16)

and the interaction field in Eq14) becomes

HI™ = - JouR
1+0;R))[s, H + H™ he
313 (1 +ouRy) [31 AL S 18,
11x11 Fij 11x11

(17)

In our algorithm, the state of the square hystespis up-
dated at a given field using the coercivit§; the applied field

H, and the interaction fiel#h™, which is evaluated using the
state of the system at the previous field step. Then the value
of theith curvilinear hysteron is calculated using Efj5) as

a function of this updated, and also as a function ¢f, h’,
andH™ (where the latter is evaluated at the previous field
step.

A set of FORCs was calculated with the “dipolar” inter-
actions in Eq.(17) and witha=10.1,b=2.97,J=25.5, gy,
=0.049, ando;=0.24. The resulting FORC distribution,
shown in Fig. %), has a prominent reversible ridge. The
field spacing of our calculated FORC dataset Hi,
=1.5 mT, which is the same as that of the experimental data
in Fig. 5. This allows us to make a quantitative comparison
between our calculated reversible ridge and the experimen-
tally measured reversible ridge in Fig(by. In Fig. 9c), it
can be seen that vertical cross sectionslat 0 through the
calculated and experimental reversible ridges are in good
agreement. Finally, a negative valley can be seen just to the
right of the reversible ridge. This is also in agreement with
the experimental data in Fig(®. This negative valley has
the same basic explanation as the negative valley in Fig.
3(b). It can be attributed to the fact that the sldpe suscep-
tibility) of our curvilinear hysterons near their negative
switching field is greater on the top branch than on the bot-
tom.

VIIl. CHOICE OF MODEL PARAMETERS

These parameter values for our final FORC diagram in . .
Fig. 9(b) were selected by optimizing the agreement between _ F!G- 10. The overlay of modeled and experimental FORC dis-
data and experiment one parameter at a time. The results off@eutions. The contour lines of the experimental result are widened
given optimization in one parameter were used as the initial:d lghtened(@ with “optimal” parameters{b) with a broader
condition for the next optimization in another parameter, anod'StrIbUtlon Of. coercivities, and(c).w'th decreased coupling .
this process was carried out repeatedly over many iteratio strength. The |_nsets are to emphasize that the decreased coupling

. r]3wers the vertical location of the upper peak.

over all the parameters. We suggest that this procedure
brings us reasonably close to an optimal fit. In Fig(al@ve
have overlaid this final result upon the experimental FORCbut leaves the peak location unchanged. The modified result
distribution in Fig. %b). The contour shading in Fig. &) is overlaid on the experimental data in Fig.(40 It can be

has been omitted, and the contour lines of the experimentaleen on the right-hand side of the diagram that the modified
diagram are widened and lightened, to help distinguish thelistribution does not reach as high a coercivity as it should.
two distributions. There appears to be good agreement be- Similarly, we recalculated the FORC distribution after in-
tween modeling and experiment. creasingJ from 25.5to 23.8 mT. The modified result is

It may be instructive to consider what changes occur inoverlaid on the experimental result in Fig.(&D It can be
the FORC distribution when we modify our final result by seen that the top peak of the modified FORC distribution is
using a more narrow Gamma distribution. We changed significantly lower than that of the experiment. We note that
(from 10.) to 19.0 mT andb (from 2.97 to 1.47, which the discrepancies produced by changihgnda in Fig. 10
changes the standard deviation from 9.4201 to 6.40758 m@ppear to be distinct and somewhat “orthogonal.” These re-
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sults help us have confidence that our final parameter values this FORC distribution is a two-branch “wishbone” struc-
are reasonably close to optimal values. ture. We showed that this wishbone signature can be ac-
counted for by a simple model consisting of symmetric hys-
terons with distributed coercivities and a negative
(antiparalle] mean field interaction. In this modeling, we
The modeling work in this paper is an extension of earlierfind that the extent of vertical spread of the FORC distribu-
work in Refs. 24 and 7. In this work, a pillar array sampletion is a measure of the interaction strength.
like the one studied here was represented by & 12 array In addition to the wishbone structure, the FORC diagram
of square hysterons, with a Gaussian distribution of coercivisignature of our pillar sample has several finer features.
ties. The mean of this Gaussian coercivity distribution wasThere is, first, a negative region at high coercivity just below
set equal to the measured coercivity of the major hysteresi$e H,=0 axis. This feature also comes out of our simple
loop. The antiparallel couplings between the hysterons wergean field calculation. Second, the upper branch of the wish-
calculated from the measured physical dimensions of the pilbone contains two distinct peaks. These two peaks arise in
lar array(i.e., pillar height, diameter, spacing, and spontane-our simple hysteron model when we replace the mean inter-
ous magnetization And, finally, the standard deviation of action field with a field having a 17 dependence. We have
the coercivity distribution, in this earlier work, was adjustedreferred to this as a “dipolar” interaction field. Introducing
in order to fit the calculated major hysteresis loop with thedisorder into the interactions of our model has been shown to
measured loop. smooth these two peaks and reduce their magnitude, which
In this paper, we have augmented this earlier modeling bymproves the agreement with the measured FORC signature.
employing curvilinear hysterons and incorporating disorder In addition to the wishbone structure, the FORC distribu-
into the interactions. We also made the mean of our coercivtion also has a prominent reversible ridge, and negative re-
ity distribution a fitting parameter. As a result, our modelinggion just adjacent this ridge. Both of these features can be
has several more fitting parameters than the modeling deroduced in modeling through the use of curvilinear hyster-
scribed just abové?* However, the FORC distribution con- 0Ons.
tains more information than does the major hysteresis loop, We recognize that the modeling performed here is phe-
and so, at least in principle, we should be able to fit morenromenological in nature. A more rigorous model based, for
parameters. example, on the Landau-Lifshitz-Gilbert equations of micro-
The interaction parametdrin this paper is the interaction magnetics, would be desirable. Interesting steps have been
field seen by the pillars in a saturated state. A good fit oftaken in this directioff but at present a rigorous model of an
modeling to data was achieved wiltk 25.5 mT. We can also array of thousands of nickel pillars is not feasible. Therefore,
calculate] from the measured parameters of the sample. Thave believe that simplified modeling such as the modeling
pillars are 250 nm in height, but have rounded tops, so wélone here can serve a useful purpose in understanding quali-
will approximate the height as 210 nm. Their diameter istatively how the features of a measured FORC signature re-
92 nm, spacing is 200 nm, and the size of sample idate to the physics of the system.
0.0665 cm. The saturation magnetization is 49.4 As perpendicular and patterned recording media are of
X 1078 emu(this was actually measured parallel to the planeincreasing interest in research and industry, FORC diagrams
of the substrate because there appear to be problems in caiay become a useful tool in the characterization of these
brating the instrument in the perpendicular directiofhis ~ media. This paper is a first step in making this possible, by
gives a spontaneous magnetization for the nickelMaf, providing a qualitative physical understanding of the FORC
=213 emu/cc or 21.3 mTthis is lower than the value of diagram signature of one perpendicular media. An obvious
320 emu/cc given in Ref. 7 for a similar sample, which maynext step for future work is to collect the FORC diagrams of
be a result of oxidation of these Ni pillars during storage inperpendicular arrays with varying pillar sizes, different spac-
atmosphere The dipolar field between nearest neighbors ining, and different materials.
the saturated state is obtained by multiplyikig, by pillar
volume and dividing by distance cubed, which gives ACKNOWLEDGMENTS
3.71 mT for nearest neighbors. In a square array, the total
dipole field is nine times the dipole field from a nearest
neighbof* which gives an interaction field of 33.4 mT. For
closely spaced particles, the dipole approximation can ove
estimate the interaction field by as much as 17?448 This

IX. DISCUSSION
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gives a dipole interaction field in the saturated state Ol Kenneth Verosub for use of his AGM. and M. Farhoud
27.7 mT. Hence, théd obtained by fitting our model to data for her work in sample preparation.

in consistent with that calculated from the physical dimen-

sions and saturation magnetization of the sample. APPENDIX: MEAN FIELD, NARROW COERCIVITY

DISTRIBUTION

X. CONCLUSION Let f(h,) be an extremely narrow distribution with mean

In this paper we report the FORC diagram signature of &he). As the reversal field is lowered from positive saturation,
perpendicular nickel nanopillar array. The dominant featurehe magnetization satisfies this equation:
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Max[0,~(H,~IM)]
-y
0

o0

f(hc)dhc+J f(ho)dhe.

Max[0,~(H,~IM)]
(A1)
Sincef(h,) is very narrow, ifM is between -1 and 1, then a

solution to Eq.(Al) can only be obtained if H-JM) is
very close to(hy). So, if ~-1<sM =<1, then we can write

= (H;=JM) :<hc>- (A2)
This implies that we can writé1(H,) as
M(H,) = Max - 1,Min[1,(<(hc) + H)/J]]. (A3)
Taking the derivative with respect té, we get
dM(H 1
L) = 2601 = (ho + HI) () + H1+ 1),
;
(A4)

where 6(x) is the “step” function, such thad(x) equals O if
x<0 and equals 1 ik=0.

Similarly, on a FORC with reversal fielt,, as the ap-
plied field is increased

Max{0,Min[-(H,=IM,),Hy~IM]]

M :M(Hr)+2f f(he)dh,.

0
(A5)

Since f(h,) is very narrow, ifM is betweenM(H,) and 1,
then a solution to Eq(A5) can only be obtained if H,
-JM) is very close tgh.). So

M(H,,Ho) = Min[1,Max{M(H,),(H, = <(h)/J]]. (AB)

Taking the derivative with respect td,, and using Eq(A4)
we get

M(H Hy) _ 1
My, 3
X 0((Ha=(he)/I=M(H))).

Taking the derivative with respect té, we get

0(1 - (Ha_ <hc>)/*])
(A7)
PM(H Hy) _ -1 o
T, 0(1 — (Ha—<he))/J)

X 8((Ha = (hc)/J = M(H,))

x%a(l = ((hey + H)IY) 0(((hy + H,) /I + 1),

(A8)
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When (H,+¢h))/J is greater than 1 or less than -1, the
product of the step functions in EGA8) equals zero. There-
fore, the expression fav(H,) in Eq. (A3) can be replaced
with (H,+¢h.))/J whereM(H,) occurs in Eq(A8). Equation
(A8) becomes

PMHLHY) =L
ot = 3 M (Ham (1)

% 8((Hy ~ ()3 = (H, + (h)1)
X0 = () + HO)A(h + H)/a = 1),

(A9)

To convert the delta function tH.,H, coordinates we must
divide by the Jacobian of the transformation, which is 1/2.
So

5((Ha_ <hc>)/\] - (Hr + <hc>)/\])
in H.,Hy, coordinates becomes
28((2Hc = 2(h))13) = J8(He = (hg)) .

Since this delta function is nonzero onlytg=(h.), then in
the 6 functions in Eq.(A9) we can make the replacements
H,=H,—(hy andH,=Hy+(h.). We get

&ZM(HCiHb) _ j— _
MHH, — J o1 ~Hy/J)

X 8(Hg = (he)) 6(1 = Hy/J) (Hy/ I + 1).
(A10)

Note that one of the step functions in E§.10) is redundant.
The FORC distribution becomes

1 PM(H,Hyp)

2 JHH,

= = otHe = (R M= Hy) ok, +3). (ALD)

P(Hb, HC) =

It can be seen that the total weight of this distribution is 1.
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