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We apply a first-order reversal curvesFORCd diagram analysis to a perpendicular nickel nanopillar array. We
find that the FORC diagram signature of this system consists of a two-branch “wishbone” structure. Two
distinct negative regions are also observed, along with a prominent reversible ridge. The objective of this paper
is to find a qualitative physical understanding or interpretation of these features. To accomplish this, we employ
an interacting hysteron model. We find that a collection of symmetric hysterons with distributed coercivities
and antiparallel mean field can account for the wishbone signature and one of the negative regions. By
employing curvilinear hysterons, we can account for the reversible ridge and the other of the negative regions.
Through a comparison of modeling and experimental work, we obtain a quantitative estimate of the dipolar
interaction strength.
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I. INTRODUCTION

Patterned arrays of single domain nanomagnets have been
proposed as candidates for high-density perpendicular mag-
netic recording media.1 An understanding of the magnetic
properties of the individual particles, as well as the nature of
the interactions between them, has been the goal of recent
experimental and theoretical studies.2–7

First-order reversal curvesFORCd diagrams8 may provide
a useful tool for the characterization of patterned perpendicu-
lar magnetic media. FORC diagrams are based on the proce-
dure described by Mayergoyz for identifying the Preisach
distribution of a classical Preisach system.9 In a FORC
diagram analysis we treat this same procedure as simply a
type of measurement, which can be performed on any mag-
netic system regardless of whether that system is consistent
with the classical Preisach model. On a FORC diagram, each
magnetic system exhibits a “signature” which contains
detailed information about that system’s magnetic
properties.8,10–16

Here we look at the FORC diagram signature of a perpen-
dicular nickel nanopillar array. Our objective is to develop a
qualitative physical interpretation of this signature and its
features. We are also interested in what physical quantities
can be extracted from the FORC distribution.

This paper is organized as follows: After a review of
FORC diagrams, we report measurements of the FORC dia-
gram signature of a perpendicular nickel nanopillar array. We
then show that a simple hysteron model with distributed co-
ercivities and a negativesantiparalleld mean interaction field
can account for the basic qualitative features of this signa-
ture. We next show that some of the finer features of this
signature can be accounted for by replacing the mean field
with a “dipolar” interaction field, and by introducing disorder
into the interactions. Finally, we augment our model by in-
corporating reversible magnetization through the use of cur-
vilinear hysterons. By fitting our model to experimental data,
we obtain a quantitative measure of the interaction strength
in our sample.

II. REVIEW OF FORC DIAGRAMS

A FORC diagram is generated from a collection of first-
order reversal curvessFORCsd, such as the one illustrated in
Fig. 1. The generation of a FORC is preceded by the satura-
tion of a system in a positive applied field. The field is then
lowered to a reversal fieldHr, and a FORC is the magneti-
zation curve that results when the applied field is increased
back to saturation.9 The magnetization at the applied fieldHa
on the FORC with reversal fieldHr is denoted byMsHr ,Had.
The FORC distribution is defined as the mixed second de-
rivative:

rsHr,Had = −
1

2

]2MsHr,Had
]Hr]Ha

. s1d

We employ FORC datasets which have a uniform field spac-
ing Hsp in both the applied and reversal fields. In order to
perform the second derivative in Eq.s1d on a dataset, we
employ a polynomial fit on a local neighborhood consisting
of a square with five data points on each side.8 For the pur-
poses of plotting a FORC distribution, it is convenient to
change coordinates fromhHa,Hrj to hHc=sHa−Hrd /2 ,Hb

=sHa+Hrd /2j.
Let us consider the FORC distribution in the simple case

of the “hysteron”s shown in Fig. 2. A hysteron is a math-
ematical construction which generates a square hysteresis
loop in an applied fieldH. The half-width and offset ofs are
referred to as its coercivity and bias, denoted byhc andhb,
respectively. A hysteron with zero bias is referred to as a
symmetric hysteron. The value ofs depends on the applied
field history in the following way: If we let the applied field
begin atH=`, then s will start at +1; s will switch to −1
wheneverH falls below s−hc+hbd, and will switch back to
+1 wheneverH rises aboveshc+hbd. The FORC distribution
of the hysterons is simply a point Diracd function at the
coordinatesHc=hc and Hb=hb. This is the motivation for
referring to these as the coercivity and bias axis. Given an
assemblage of symmetric hysterons with a distribution of
coercivitiesfshcd, one will obtain a FORC distribution of the
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form rsHc,Hbd=dsHbdfshcd, which is a delta function
“ridge” on theHb=0 axis.

In general, the magnetic response of a material is a con-
volution of reversible and irreversible magnetizations. As it
has just been described, a FORC distribution does not cap-
ture the contribution of a reversible magnetization. However,
it has been shown that a reversible magnetization can be
captured be means of extended FORCs.17 An extended
FORC is defined as

MextsHa,Hrd ; HMsHa,Hrd if Ha ù Hr ,

MsHr,Hrd if Ha , Hr
J . s2d

When the FORC distribution is calculated with the extended
FORCs in Eq.s2d, then one obtains a “reversible ridge” on
the Hc=0 axis which is given by

rsHc = 0,Hbd =
1

2
dsHcd lim

Ha→Hr
+
U ]MsHa,Hrd

]Ha
U

Hr=Hb

. s3d

The derivative in Eq.s3d is the slope of the FORC with
reversal fieldHr =Hb where that FORC is joined to the major
hysteresis loop. This is equivalent to the reversible suscepti-
bility on the descending major hysteresis loop at applied field
Hb. The FORC distribution with the extended FORCs in
Eq. s2d captures the entire magnetic response, so that the
total weight of the distribution equals the saturation
magnetization.17

If a system contains a reversible magnetization of the
simple formMrevsHd, then this reversible magnetization will
give rise to a delta function ridge in the FORC distribution of
the form

rsHc,Hbd =
1

2
dsHcd

dMrevsHbd
dHb

. s4d

More generally, however, the reversible magnetization will
be coupled to the irreversible magnetization. This coupling
implies that the “reversible magnetization” may not be glo-
bally reversible. As a result, the “reversible magnetization”
may actually contribute features to the FORC distribution
which are located off theHc=0 axis. This effect will be
demonstrated by the particulate magnetic media example we
consider next.

In this paper, we will be looking at a magnetic media
which is a candidate for perpendicular magnetic recording.
Before doing so, it may be worthwhile to consider the FORC
distribution of a magnetic media used in the older and sim-
pler longitudinal recording technology. The sample we have
chosen is a Sony High Density floppy disk, which contains a
dispersion of fine particles in a polymer film. We use the case
of this floppy disk sample to illustrate some important ideas
in FORC diagram analysis which will prove useful in the
study of our nanopillar array sample.

In Fig. 3sad we show the FORC distribution of the Sony
disk sample. The measurements were done in the plane of
the disk. The magnetization of the FORCs were normalized
by the saturation magnetization before calculating this distri-
bution. A legend for the contour shadings is shown above the
diagram. Max denotes the value of the FORC distribution at
its “irreversible” peak located at aboutHc=90 mT. Note that
r goes to zero at the right-hand boundary of the diagram.
The shading at this boundary corresponds tor<0; lighter
shadings represent negative regions ofr. The “reversible”
ridge in Fig. 3sad appears as a dark vertical stripe atHc=0.
For a better look at this ridge, we plot a horizontal cross-
section atHb=−5 mT in sbd and a vertical cross-section
throughHc=0 in scd.

If temperature and interaction effects are ignored, then
this particulate system can be treated to a rough approxima-
tion as a collection of square hysterons. In this simple treat-
ment, we would expect the FORC distribution due to the
square hystersons to consist of a sharply peaked horizontal
ridge on theHb=0 axis. But in Fig. 3sad we can see that the
“irreversible” peak at aboutHc=90 mT actually has consid-
erable vertical spreadsi.e., spread in the bias distributiond. It
has been shown experimentally that this spread increases
with an increasing concentration of particles.8–18 This sug-
gests that the spread in the bias distribution can be attributed
primarily to dipole interactions, and that the amount of
spread can be used as a measure of the interaction strength in
this type of media.

The reversible magnetization can be incorporated into this
simple theoretical treatment by adding a reversible magneti-
zation of the simple formMrevsHd. In this form, the revers-
ible and irreversible magnetizations are decoupled. But in a
more realistic treatment, the reversible and irreversible mag-
netizations would be coupled. For example, if we treat these
particles as Stoner-Wholfarth-type particles, then the slope

FIG. 1. A first-order reversal curvesFORCd is acquired after
saturating the sample in a positive applied field. The applied field is
lowered to a reversal fieldHr. A FORC is the magnetization curve
that results when the applied fieldHa is increased back to satura-
tion. The magnetization at the applied fieldHa on a FORC with
reversal fieldHr is denoted byMsHa,Hrd.

FIG. 2. A hysterons with coercivity hc and biashb. A hysteron
with zero bias is said to be symmetric.
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sor susceptibilityd of their hysteresis loops near the negative
switching field is greater on the top branch than on the bot-
tom sexcept in the specific case of a particle whose easy axis
is aligned with the applied field, in which case the hysteresis
loop is just a square loopd. This difference in slope between
the top and bottom branches implies that the reversible and
irreversible components are coupled, and it leads directly to
the negative valley located in the lower part of Fig. 3sad.17,20

As described later, we will find a similar negative valley
in the FORC distribution of our nanopillar array.

A more detailed analysis of the FORC distribution in Fig.
3sad shows that the spreadsi.e., standard deviationd in bias is
actually greatest at lowHc and vanishes toward highHc,
resulting in the high coercivity “tail” seen in Fig. 3sad.19 This
behavior can be attributed to “completion symmetry” which
can be described in the following manner: Let us suppose
that in some neighborhood of this particulate media, there is
one particle which is always the last to switch into the direc-
tion of the applied field. It can be said that this particle “com-
pletes” the reversal of its local neighborhood. Let us refer to
this particle as a “completion particle.” The interaction field
experienced by a completion particle when it switches posi-
tive is approximately equal and opposite to the interaction
field it experiences when it switches negative. Because of
this symmetry, a completion particle behaves as if it has little
or no bias. The decreasing bias spread toward largeHc in
Fig. 3sad has been attributed to particles which behave like
completion particles. As one proceeds toward highHc, the
completion symmetry just described forces the distribution’s
bias to approach zero.19

The same completion symmetry has been found in the
Edwards-Anderson spin glasssEASGd.14 The EASG is an
Ising model with nearest-neighbor random interactions, dis-
tributed around zero, thus having an equal number of ferro-
magnetic and antiferromagnetic bonds. In the FORC distri-
bution for the EASG, a sharp ridge has been found on theHc
axis si.e., zero biasd at high coercivity. This ridge is due to
particles which consistently are, the last in their local neigh-
borhood to switch into the direction of the applied field, i.e.,
completion particles. In the case of the particulate media
discussed above, since the interactions are long range dipo-
lar, completion symmetry is not an exact relationship. As a
result, its effect is somewhat subtle. By contrast, since inter-
actions are short range in the EASG model, completion sym-
metry can be exact. As a result, the ridge on theHc axis of
the Edward-Anderson spin glass FORC distribution is quite
dramatic.14

Completion symmetry is a common theme in many FORC
distributions. As described below, we will find the effect of
completion symmetry in the FORC distribution of our nano-
pillar array.

III. EXPERIMENT

The sample in this study was an array of Ni pillars with
diameter 92 nm, height 250 nm, and period 200 nm. The Ni
is polycrystalline with a grain size of 10 to 20 nm. A scan-
ning electron micrograph is shown in Fig. 4. The sample was
made by interference lithography and electrodeposition, in a
process described previously,7 and was made simultaneously
with the sample shown in Fig. 1sbd of Ref. 7. According to
magnetic force microscopy, each pillar constitutes a mag-
netic single domain with easy axis parallel to the long axis,
i.e., perpendicular to the plane of the substrate.

A set of 140 FORCssHsp=1.5 mTd was measured with a
Princeton Measurements Alternating Field Magnetometer as
shown in Fig. 5sad. Measurements were done perpendicular

FIG. 3. sad A FORC diagram for Sony high density floppy disk
sample. In the legend for the contour shading, Max denotes the
value of the FORC distribution at its “irreversible” peak located at
aboutHc=90 mT. A prominent reversible ridge appears on theHc

=0. Note that the high density of vertical contour lines near the
Hc=0 axis makes the shading there appear darker than it actually is.
A negative region occurs adjacent to the reversible ridge at about
Hb=−85 mT. The shape of the reversible ridge is conveyed by the
two cross sections insbd and scd. In sbd we plot a horizontal cross
section passing though the irreversible peak atHb=−5 mT. In scd
we plot a vertical cross section through the reversible ridge at
Hc=0.
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to the substrate. The magnetization was normalized by the
saturation magnetization. The FORC distribution generated
from this data is shown in Fig. 5sbd. Again, Max denotes the
value ofr at the “irreversible peak,” which is located in the
case at aboutHc=23 mT, Hb=20 mT. A large reversible
ridge can be seen on theHc=0 axis. The most prominent
feature of the FORC distribution, aside from the reversible
ridge, is a two branch “wishbone” structure. The vertical
cross-section through this ridge is shown in Fig. 5scd. Two
negative “valleys” can be also be seen in Fig. 5sbd: one at
high coercivity just below theHb=0 axis, and another adja-
cent to the reversible ridge.

In the following sections we develop a qualitative under-
standing of the physical mechanisms which give rise to the
features of this measured FORC signature.

IV. MEAN FIELD MODELING

We next show that the wishbone structure of the FORC
signature in Fig. 5sbd can be qualitatively accounted for us-
ing a interacting hysteron model with a negativesantiparal-
leld mean field and distributed coercivities. Let us begin with
a collection ofN square and symmetricszero biasd hysterons.
The state of theith hysteron is denoted bysi, which can take
values of ±1. The pillars in this array do not have a perfectly
uniform shape and size; they also likely contain a high den-
sity of defects, vacancies, and inhomogeneities. Therefore a
distribution of coercivities is expected. The coercivity of the
ith hysteron is denoted byhi

c. The distribution of coercivities
is denoted byfshcd. The total normalized magnetization of
the system is given by

M = o si/N. s5d

Since the magnetization of the nickel pillars is dominantly
oriented perpendicular to the plane of the substrate, then the
dipolar interaction is antiparallel to the direction of the mag-
netization. In this section we will represent this interaction
by a mean interaction field written as

Hint = − JM, s6d

whereJ is the magnitude of the total interaction field seen by
the hysterons in the saturated state. The total field is the sum
of the externally applied fieldH and Hint. In our algorithm
for calculating FORCs, the applied fieldH was initially
given a large value and thesi were all set to +1. ThenH is
lowered in small “field steps”. To obtain robust numerical
results with interacting systems, the size of the field steps
should be much smaller than the width of the coercivity dis-
tribution. Note that a “field step” is distinct from a “field

FIG. 4. Scanning electron micrograph of pillar sample.

FIG. 5. sad The first-order reversal curvesFORCd data for nickel
pillar sample. To make it easier for the eye to resolve individual
curves, only 70 of the 140 measured FORCs are shown.sbd The
FORC distribution generated from this data. Max denotes the value
of the distribution at the “irreversible” peak located at aboutHc

=23 mT,Hb=20 mT. On theHc=0 vertical axis is a sharply peak
ridge due to reversible magnetization.scd The vertical cross section
through the “reversible” ridge atHc=0 as a function ofHb.
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spacing”. “Field spacing” refers to the spacing between the
data points in a FORC dataset. Each field spacing is divided
into Nst field steps.

After each field step, the values of thesi are updated in
this fashion: Ifsi =1 and

Hint + H , − hi
c, s7d

thensi is updated to −1; ifsi =−1 and

hi
c , Hint + H, s8d

thensi is updated to +1. In our algorithm, the value ofHint

used in this updating is obtained from the state of the system
at the previous field step. In this manner, the descending
hysteresis loop is calculated down to a reversal fieldHr. To
obtain a FORC, we begin incrementing the field starting
from this reversal field and update the hysterons in a similar
fashion.

It is instructive to first look at this mean field model in the
case of a very narrow coercivity distribution. We letfshcd be
a Gaussian with mean 27 mT and standard deviation
0.027 mT, and we letJ=21.1 mT. In all the numerical cal-
culations of this paper, we letN=160,000,Nst=150, and we
calculate 140 FORCs for each diagram. The numerically cal-
culated FORCssHsp=1.3d and FORC distribution are shown
in Figs. 6sad and 6sbd. The FORC distribution shows a nar-
row and vertically elongated ridge. In the Appendix we give

an analytical derivation of this same result. Next, we suggest
a qualitative explanation for this vertical ridge.

Assume that the hysterons are ordered with ascendinghc,
so thathi+1

c .hi
c. Then the lowest coercivity in the collection

is equal toh1
c and the highest coercivity is denoted byhN

c . As
the reversal field is lowered from saturation, the first hys-
teron to switch negative isi =1, and it will switch down at
Hr =−h1

c+J ssince the magnetization is 1d. If the applied field
begins increasing at this reversal field to obtain a FORC,
then thei =1 hysteron switches positive atHa=h1

c+J swhere
we have assumed that the switching of one pillar produces an
infinitesimal change inMd. The combination of these two
switching eventssa negative switch at −h1

c+J and a positive
switch ath1

c+Jd contributes to the FORC distribution atHb
=−J andHc=h1

c, which corresponds to the upper endpoint of
the vertical distribution in Fig. 6sbd.

Similarly, as the reversal field is lowered from saturation,
the last hysteron to switch negative isi =N at Hr =−hN

c −J
swhere the magnetization is near negative saturation when
the last hysteron switches negatived. If the applied field be-
gins increasing at this reversal field, then thei =1 hysteron is
the first to switch positive atHa=h1

c+J. But since the coer-
civity distribution is narrow, then to a good approximation
we can approximate this pair of negative and positive switch-
ing fields asHr =−khcl−J andHa=khcl−J, respectively. This
pair of switching events contributes to the FORC distribution
in Hc,Hb coordinates atHc=khcl and Hb=−J. This corre-
sponds to the lower endpoint of the vertical distribution in

FIG. 6. The FORCs and the FORC distribution of a collection of hysterons with mean field interactions:sad andsbd a narrow Gaussian
coercivity distribution andJ=21.1 mT; a broader Gamma distribution withJ=0 fscd andsddg and withJ=21.1 mTfsed andsfdg. Only 70 of
the 140 calculated FORCs are shown insad, scd, andsed. Many of these FORCs coincide and cannot be distinguished in this plot.
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Fig. 6sbd. Hence, we have an understanding of the location of
the two endpoints of the vertically elongated distribution in
Fig. 6sbd.

We next consider a system of hysterons with a broader
coercivity distribution. We will use a gamma distribution of
coercivities21 of the form

fshcd = b−ae−hc/bhc
s−1+ad/Gsad. s9d

In this paper, we will leta=10.1 mT andb=2.97fwhich has
a peak atsa−1db=27 mTg. The motivation for these numeri-
cal values ofa andb is that, as shown below, they give us a
good fit to the experimental data in Fig. 5sbd. The FORCs
were numerically calculated withJ=0, as shown in Fig. 6scd.
The resulting FORC distribution in Fig. 6sdd consists of a
horizontal ridge on theHb=0 axis. If the field spacings of
this dataset were made finer, this ridge would approach the
form dsHbdfsHcd sas mentioned in Sec. IId. When the inter-
action strength is increased toJ=21.1 mT in Figs. 6sed and
6sfd, the FORC distribution forms a wishbone structure simi-
lar to that in the experimental data of Fig. 5sbd. A negative
region can be seen just below theHb=0 axis at high coerciv-
ity. A similar negative region is seen in the experimental
data.

To summarize our numerical results so far, a collection of
symmetric hysterons with distributed coercivities with a
simple antiparallel mean interaction field generates a FORC
distribution with the same basic “wishbone” signature as our
nanopillar array sample. The remainder of this paper refines
this basic result by, first, introducing more realistic “dipolar”
interactions; second, putting disorder into the interactions;
and, third, employing curvilinear hysterons.

Before doing that, however, we suggest the following
qualitative explanation for the upper branch of the wishbone
pattern in Fig. 6sfd. Let us refer to FORCs which have rever-
sal points near positive saturation as “upper” FORCs. Simi-
larly, we will refer to the FORCs which start from near nega-
tive saturation as “lower” FORCs. On the upper FORCs, the
last hysterons to switch positive are low coercivity hysterons.
But, on the lower FORCs, the last hysterons to switch posi-
tive are high coercivity hysterons. Thus, the applied field
necessary to return the system to positive saturation becomes
larger as the reversal field is lowered. This effect can be seen
in the FORCs of Fig. 6sed. The point where the FORCs re-
turn to positive saturation is “pushed” out to higher fields as
the reversal field is lowered. This is qualitatively the cause of
the upper branch of the wishbone in Fig. 6sfd.

V. DIPOLAR INTERACTIONS

Looking at the experimental FORC diagram in Fig. 5sbd,
it can be seen that the upper branch has two distinct peaks.
We next show that this two-peak structure arises when we
consider non-mean-field forms for the interactions.

Let us consider a 2-D square array of hysterons with a
uniform coupling in a local neighborhood about each pillar.
This local neighborhood consists of nearest and next-nearest
neighbors, i.e., a 333 square about each pillar. The interac-
tion field at theith particle becomes

Hi
int = −

J

8 o
333

sj , s10d

where this sum does not include theith pillar itself. The
factor of 8 in the denominator is chosen because each hys-
teron interacts with eight neighbors. It is the analog of the
1/N in Eq. s5d in the mean field interaction case. We calcu-
lated the FORC distribution with a grid of size 4003400 and
with J=21.1 mT. As seen in Fig. 7sad, the resulting distribu-
tion now has two distinct peaks: one prominent peak in the
upper left of the diagram and another weaker peak at high
coercivity on theHb=0 axis. We next suggest explanations
for these two peaks, starting with the upper left peak.

As the reversal field is lowered from positive saturation,
those hysterons which switch negative at the upper reversal
fieldssi.e., near positive saturationd will be dispersed through
the system. Because of the locality of the interaction field in
Eq. s10d, these hysterons will seldom interact with one an-
other. Hence, they will all see the same interaction field
when they switch negative. When these hysterons switch
back to positive on the upper FORCs they will still see this
same interaction field. Hence, those hysterons which switch

FIG. 7. The calculated FORC distribution of a 2-D array of
hysterons with gamma distribution of coercivities and local anti-
parallel interactions sJ=21.1 mTd. Two types of interactions
were used. Insad, a 333 local interaction neighborhood with uni-
form coupling fsee Eq.s10dg. In sbd, “dipolar” interactions with a
11311 interaction neighborhoodfsee Eq.s11dg.
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negative at an upper reversal fields will all have the same
bias; they will also generally be low coercivity hysterons.
The result is a horizontal ridge atHb=J and smallHc.

The high coercivity peak in Fig. 7sad can be explained by
the “completion symmetry” described in Sec. II. We propose
that a certain fraction of the pillars in this sample consis-
tently are the last pillars in their local neighborhoods to
switch into the direction of the applied field. As discussed in
Sec. II, the interactions will not give any bias to these
“completion pillars”. This, we suggest, accounts for the high
coercivity peak on theHc si.e., zero biasd axis in Fig. 7sad.

We consider next interactions with a 1/r3 dependence,
which we will refer to as “dipolar” interactions. In order to
make our numerical calculations practical, we have restricted
this interaction to a local 11311 neighborhood centered
around each hysteron. The interaction field is written as

Hi
int = − J o

11311

sj

r ij
3 Y o

11311
r ij

3 , s11d

wherer ij is the distance between thei and j hysterons, and
where this sum does not include theith pillar itself. We cal-
culated the FORC distribution using Eq.s11d and again with
J=21.1 mT. It can be seen in Fig. 7sbd that with a 1/r3

interaction this model behaves much as it did with the uni-
form next-nearest neighbor interaction in Fig. 7sad.

VI. DISORDER

In the modeling results so far, we have shown that the
wishbone structure seen in experiment can be accounted for
with a simple mean field model and with distributed hysteron
coercivities. When the mean field is replaced with dipolar
interactions, the upper branch of the wishbone develops two
distinct peaks at opposite ends. However, the magnitude of
the upper peak is much more pronounced in the calculated
FORC diagramfFig. 7sbdg than in the experimental result
fFig. 5sbdg. As we show next, when disorder is introduced
into the interactions, this peak is smoothed and its magnitude
is reduced.

To justify the introduction of disorder, we note that the
pillars in the array do not have precisely uniform size or
shape, and that since each pillar contains a number of nickel
grains, their microstructure is nonuniform. Hence, the cou-
pling between pillars will not be perfectly described by a
dipolar 1/r3 expression. Therefore, let us introduce disorder
into the interactions by writing

Hi
int = − J o

11311

s1 + sJRijdsj

r ij
3 Y o

11311
r3, s12d

whereRi is a normally distributed random number with stan-
dard deviation 1 and mean zerosRij is fixed for a giveni and
jd. The degree of disorder in Eq.s12d is governed bysJ. We
calculated the FORC distribution withsJ=0.35 and again
with J=21.1 mT. As seen in Fig. 8sad, the magnitude of the
upper peak on the upper branch has been reduced, and is now
in better agreement with the experimental data.

However, with the upper peak reduced, we can now see
that the high coercivity peak in Fig. 8sad is too large. This is

due to the fact that the completion symmetry discussed ear-
lier remains intact even with the disorder in Eq.s12d. To
reduce the high coercivity peak, we must break this comple-
tion symmetry. One possible physical mechanism that would
accomplish this is a random bias field. A random bias field
could arise if some spins of the system are frozen into spe-
cific directions at the energy and time scales considered here.
Such freezing might arise from high local crystalline or
shape anisotropies, and would give rise to an effective ran-
dom bias field.

We can rewrite the interaction field with a random bias
field as

FIG. 8. The calculated FORC distribution with “dipolar” inter-
actions and disorder. A gamma distribution of coercivities is used
andJ=21.1 mT. Insad, a random term is inserted into the coupling
with s j =0.35 fsee Eq.s12dg. In sbd, a random bias field is inserted
at each hysteron site withsb=0.076fsee Eq.s13dg. In scd, a random
bias field and a random term in the coupling are combined, with
sb=0.049 ands j =0.24 fsee Eq.s14dg.
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Hi
int = − JSsbRi + o

11311

sj

r ij
3 Y o

11311
r3D , s13d

where sb governs the degree of disordersRi is fixed for a
given id. When we recalculate the FORC distribution with
sb=0.076 andJ=21.1 mT, as seen in Fig. 8sbd, the high
coercivity peak is gone. Hence, only a small random bias
field is required to achieve the desired result.

Finally, we combine these two types of disorder,

Hi
int = − JSsbRi + o

11311

s1 + sJRijdsj

r ij
3 Y o

11311
r3D ,

s14d

and we recalculate the FORC distribution withsb=0.049,
sJ=0.24, andJ=21.1 mT, as seen in Fig. 8scd. With this
combination of disorder, the magnitudes of the two peaks on
the upper branch occur in approximate agreement with the
experimental data of Fig. 5sbd.

VII. CURVILINEAR HYSTERONS

The nickel pillars in our sample are oriented perpendicu-
lar to the substrate and aligned with the applied field. If they
behaved as Stoner-Wohlfarth particles, then they would have
no reversible magnetization. But micromagnetic calculations
show that nickel pillars of the size in our sample have
“flower” remanent states, and that their remanent magnetiza-
tion measured in units of the saturation magnetization is less
than 1.7 This indicates that these pillars have some reversible
magnetization. Furthermore, the experimental FORC distri-
bution in Fig. 5sbd exhibits a substantial reversible ridge.
Therefore, we next incorporate a reversible magnetization
into our model by replacing the square hysterons with curvi-
linear hysterons. Curvilinear hysterons have been previously
used in Refs. 22 and 23.

The magnetization of a curvilinear hysteron with coerciv-
ity hc can be represented assclfs,H ,hcg, whereH is the ap-
plied field ands= ±1 is the state of a symmetric square hys-
teron with the same coercivityhc. For our numerical
calculations, we require a functional form forsclfs,H ,hcg.
However, the magnetic reversal of these pillars is sensitive to
irregularities in their shape, to crystalline imperfections and
surface roughness, and to oxidation state. All these factors
make an analytical or numerical solution for the hysteresis of
these pillars problematic. Therefore, we have used a phe-
nomenological functional form for our curvilinear hysterons
which results in good agreement between experiment and
data. This functional form is

sclfs,H,hcg ; s+ s1 − Tanhs0.106hc − 4dd 1
2

3 h0.18fTanhsH/35.1d − sg

− s0.375 Maxf0,s27.0 −sHd/s27.0 +hcdg3.6j.

s15d

This functional form has two notable properties which we
have found improve the agreement to data: First, the factor
f1−Tanhs0.106hc−4dg forces the size of the reversible com-

ponent to decrease with increasinghc. Second, the term con-
taining “Max” results in a rapidly increasing curvature as the
discontinuous jump is approached. These two properties can
be seen in Fig. 9sad, where we plot curvilinear hysterons of
this functional form for several values ofhc, and where these
hysterons are superimposed on the gamma distribution ofhc
described earlier.

With curvilinear hysterons, the total magnetization of an
interacting system becomes

FIG. 9. sad The curvilinear hysterons superimposed upon the
distribution of coercivities.sbd The numerically calculated FORC
distributions with “dipole” interactions and curvilinear hysterons.
scd The vertical cross section through the reversible ridge of the
FORC distributions atHc=0. The dotted line is from the experi-
mental data in Fig. 5scd for comparison.
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M = o
i

sclfsi,H + Hi
int,hi

cg/N, s16d

and the interaction field in Eq.s14d becomes

Hi
int = − JsbRi

− J o
11311

s1 + sJRijdsclfsj,H + Hj
int,hj

cg
r ij

3 Y o
11311

r3.

s17d

In our algorithm, the state of the square hysteronsi is up-
dated at a given field using the coercivityhi

c, the applied field
H, and the interaction fieldHi

int, which is evaluated using the
state of the system at the previous field step. Then the value
of the ith curvilinear hysteron is calculated using Eq.s15d as
a function of this updatedsi, and also as a function ofH, hi

c,
and Hi

int swhere the latter is evaluated at the previous field
stepd.

A set of FORCs was calculated with the “dipolar” inter-
actions in Eq.s17d and with a=10.1, b=2.97, J=25.5, sb
=0.049, andsJ=0.24. The resulting FORC distribution,
shown in Fig. 9sbd, has a prominent reversible ridge. The
field spacing of our calculated FORC dataset isHsp
=1.5 mT, which is the same as that of the experimental data
in Fig. 5. This allows us to make a quantitative comparison
between our calculated reversible ridge and the experimen-
tally measured reversible ridge in Fig. 5sbd. In Fig. 9scd, it
can be seen that vertical cross sections atHc=0 through the
calculated and experimental reversible ridges are in good
agreement. Finally, a negative valley can be seen just to the
right of the reversible ridge. This is also in agreement with
the experimental data in Fig. 5sbd. This negative valley has
the same basic explanation as the negative valley in Fig.
3sbd. It can be attributed to the fact that the slopesor suscep-
tibility d of our curvilinear hysterons near their negative
switching field is greater on the top branch than on the bot-
tom.

VIII. CHOICE OF MODEL PARAMETERS

These parameter values for our final FORC diagram in
Fig. 9sbd were selected by optimizing the agreement between
data and experiment one parameter at a time. The results of a
given optimization in one parameter were used as the initial
condition for the next optimization in another parameter, and
this process was carried out repeatedly over many iterations
over all the parameters. We suggest that this procedure
brings us reasonably close to an optimal fit. In Fig. 10sad we
have overlaid this final result upon the experimental FORC
distribution in Fig. 5sbd. The contour shading in Fig. 10sad
has been omitted, and the contour lines of the experimental
diagram are widened and lightened, to help distinguish the
two distributions. There appears to be good agreement be-
tween modeling and experiment.

It may be instructive to consider what changes occur in
the FORC distribution when we modify our final result by
using a more narrow Gamma distribution. We changeda
sfrom 10.1d to 19.0 mT andb sfrom 2.97d to 1.47, which
changes the standard deviation from 9.4201 to 6.40758 mT

but leaves the peak location unchanged. The modified result
is overlaid on the experimental data in Fig. 10sbd. It can be
seen on the right-hand side of the diagram that the modified
distribution does not reach as high a coercivity as it should.

Similarly, we recalculated the FORC distribution after in-
creasingJ from 25.5 to 23.8 mT. The modified result is
overlaid on the experimental result in Fig. 10scd. It can be
seen that the top peak of the modified FORC distribution is
significantly lower than that of the experiment. We note that
the discrepancies produced by changingJ and a in Fig. 10
appear to be distinct and somewhat “orthogonal.” These re-

FIG. 10. The overlay of modeled and experimental FORC dis-
tributions. The contour lines of the experimental result are widened
and lightenedsad with “optimal” parameters,sbd with a broader
distribution of coercivities, andscd with decreased coupling
strength. The insets are to emphasize that the decreased coupling
lowers the vertical location of the upper peak.
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sults help us have confidence that our final parameter values
are reasonably close to optimal values.

IX. DISCUSSION

The modeling work in this paper is an extension of earlier
work in Refs. 24 and 7. In this work, a pillar array sample
like the one studied here was represented by a 12312 array
of square hysterons, with a Gaussian distribution of coercivi-
ties. The mean of this Gaussian coercivity distribution was
set equal to the measured coercivity of the major hysteresis
loop. The antiparallel couplings between the hysterons were
calculated from the measured physical dimensions of the pil-
lar arraysi.e., pillar height, diameter, spacing, and spontane-
ous magnetizationd. And, finally, the standard deviation of
the coercivity distribution, in this earlier work, was adjusted
in order to fit the calculated major hysteresis loop with the
measured loop.

In this paper, we have augmented this earlier modeling by
employing curvilinear hysterons and incorporating disorder
into the interactions. We also made the mean of our coerciv-
ity distribution a fitting parameter. As a result, our modeling
has several more fitting parameters than the modeling de-
scribed just above.7,24 However, the FORC distribution con-
tains more information than does the major hysteresis loop,
and so, at least in principle, we should be able to fit more
parameters.

The interaction parameterJ in this paper is the interaction
field seen by the pillars in a saturated state. A good fit of
modeling to data was achieved withJ=25.5 mT. We can also
calculateJ from the measured parameters of the sample. The
pillars are 250 nm in height, but have rounded tops, so we
will approximate the height as 210 nm. Their diameter is
92 nm, spacing is 200 nm, and the size of sample is
0.0665 cm2. The saturation magnetization is 49.4
310−6 emusthis was actually measured parallel to the plane
of the substrate because there appear to be problems in cali-
brating the instrument in the perpendicular directiond. This
gives a spontaneous magnetization for the nickel ofMsp
=213 emu/cc or 21.3 mTsthis is lower than the value of
320 emu/cc given in Ref. 7 for a similar sample, which may
be a result of oxidation of these Ni pillars during storage in
atmosphered. The dipolar field between nearest neighbors in
the saturated state is obtained by multiplyingMsp by pillar
volume and dividing by distance cubed, which gives
3.71 mT for nearest neighbors. In a square array, the total
dipole field is nine times the dipole field from a nearest
neighbor24 which gives an interaction field of 33.4 mT. For
closely spaced particles, the dipole approximation can over-
estimate the interaction field by as much as 17.4%.24,25 This
gives a dipole interaction field in the saturated state of
27.7 mT. Hence, theJ obtained by fitting our model to data
in consistent with that calculated from the physical dimen-
sions and saturation magnetization of the sample.

X. CONCLUSION

In this paper we report the FORC diagram signature of a
perpendicular nickel nanopillar array. The dominant feature

of this FORC distribution is a two-branch “wishbone” struc-
ture. We showed that this wishbone signature can be ac-
counted for by a simple model consisting of symmetric hys-
terons with distributed coercivities and a negative
santiparalleld mean field interaction. In this modeling, we
find that the extent of vertical spread of the FORC distribu-
tion is a measure of the interaction strength.

In addition to the wishbone structure, the FORC diagram
signature of our pillar sample has several finer features.
There is, first, a negative region at high coercivity just below
the Hb=0 axis. This feature also comes out of our simple
mean field calculation. Second, the upper branch of the wish-
bone contains two distinct peaks. These two peaks arise in
our simple hysteron model when we replace the mean inter-
action field with a field having a 1/r3 dependence. We have
referred to this as a “dipolar” interaction field. Introducing
disorder into the interactions of our model has been shown to
smooth these two peaks and reduce their magnitude, which
improves the agreement with the measured FORC signature.

In addition to the wishbone structure, the FORC distribu-
tion also has a prominent reversible ridge, and negative re-
gion just adjacent this ridge. Both of these features can be
produced in modeling through the use of curvilinear hyster-
ons.

We recognize that the modeling performed here is phe-
nomenological in nature. A more rigorous model based, for
example, on the Landau-Lifshitz-Gilbert equations of micro-
magnetics, would be desirable. Interesting steps have been
taken in this direction26 but at present a rigorous model of an
array of thousands of nickel pillars is not feasible. Therefore,
we believe that simplified modeling such as the modeling
done here can serve a useful purpose in understanding quali-
tatively how the features of a measured FORC signature re-
late to the physics of the system.

As perpendicular and patterned recording media are of
increasing interest in research and industry, FORC diagrams
may become a useful tool in the characterization of these
media. This paper is a first step in making this possible, by
providing a qualitative physical understanding of the FORC
diagram signature of one perpendicular media. An obvious
next step for future work is to collect the FORC diagrams of
perpendicular arrays with varying pillar sizes, different spac-
ing, and different materials.
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APPENDIX: MEAN FIELD, NARROW COERCIVITY
DISTRIBUTION

Let fshcd be an extremely narrow distribution with mean
khcl. As the reversal field is lowered from positive saturation,
the magnetization satisfies this equation:
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M = −E
0

Maxf0,−sHr−JMdg

fshcddhc +E
Maxf0,−sHr−JMdg

`

fshcddhc.

sA1d

Since fshcd is very narrow, ifM is between −1 and 1, then a
solution to Eq.sA1d can only be obtained if −sH−JMd is
very close tokhcl. So, if −1øM ø1, then we can write

− sHr − JMd = khcl. sA2d

This implies that we can writeMsHrd as

MsHrd = Max†− 1,Minf1,skhcl + Hrd/Jg‡. sA3d

Taking the derivative with respect toHr we get

dMsHrd
dHr

=
1

J
u„1 − skhcl + Hrd/J…u„skhcl + Hrd/J + 1…,

sA4d

whereusxd is the “step” function, such thatusxd equals 0 if
x,0 and equals 1 ifxù0.

Similarly, on a FORC with reversal fieldHr, as the ap-
plied field is increased

M = MsHrd + 2E
0

Max†0,Minf−sHr−JMrd,Ha−JMg‡

fshcddhc.

sA5d

Since fshcd is very narrow, ifM is betweenMsHrd and 1,
then a solution to Eq.sA5d can only be obtained if −sHa

−JMd is very close tokhcl. So

MsHr,Had = Min†1,MaxfMsHrd,sHa − khcld/Jg‡. sA6d

Taking the derivative with respect toHa, and using Eq.sA4d
we get

]MsHr,Had
]Ha

=
1

J
u„1 − sHa − khcld/J…

3u„sHa − khcld/J − MsHrd…. sA7d

Taking the derivative with respect toHr we get

]2MsHr,Had
]Ha]Hr

=
− 1

J
u„1 − sHa − khcld/J…

3d„sHa − khcld/J − MsHrd…

3
1

J
u„1 − skhcl + Hrd/J…u„skhcl + Hrd/J + 1….

sA8d

When sHr +khcld /J is greater than 1 or less than −1, the
product of the step functions in Eq.sA8d equals zero. There-
fore, the expression forMsHrd in Eq. sA3d can be replaced
with sHr +khcld /J whereMsHrd occurs in Eq.sA8d. Equation
sA8d becomes

]2MsHr,Had
]Ha]Hr

=
− 1

J
u„1 − sHa − khcld/J…

3d„sHa − khcld/J − sHr + khcld/J…

3
1

J
u„1 − skhcl + Hrd/J…u„skhcl + Hrd/J − 1….

sA9d

To convert the delta function toHc,Hb coordinates we must
divide by the Jacobian of the transformation, which is 1/2.
So

d„sHa − khcld/J − sHr + khcld/J…

in Hc,Hb coordinates becomes

2d„s2Hc − 2khcld/J… = JdsHc − khcld.

Since this delta function is nonzero only atHc=khcl, then in
the u functions in Eq.sA9d we can make the replacements
Hr =Hb−khcl andHa=Hb+khcl. We get

]2MsHc,Hbd
]Hc]Hb

=
− 1

J
us1 − Hb/Jd

3dsHc − khcldus1 − Hb/JdusHb/J + 1d.

sA10d

Note that one of the step functions in Eq.sA10d is redundant.
The FORC distribution becomes

rsHb,Hcd = −
1

2

]2MsHc,Hbd
]Hc]Hb

=
1

2J
dsHc − khcldusJ − HbdusHb + Jd. sA11d

It can be seen that the total weight of this distribution is 1.
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