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Domain regime in two-dimensional disordered vortex matter
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A detailed numerical study of the real-space configuration of vortices in disordered superconductors using
two-dimensional London-Langevin model is presented. The magneticHieldsaried between 0 and, for
various pinning strengthA. For weak pinning, an inhomogeneous disordered vortex matter is observed, in
which the topologically ordered vortex lattice survives in large domains. The majority of the dislocations in
this state are confined to the grain boundaries/domain walls. Such quasiordered configurations are observed in
the intermediate fields, and we refer it as the domain redb#®. The DR is distinct from the low-field and
the high-fields amorphous regimes which are characterized by a homogeneous distribution of defects over the
entire system. Analysis of the real-space configuration suggests domain-wall roughening as a possible mecha-
nism for the crossover from the DR to the high-field amorphous regime. The DR also shows a sharp crossover
to the high-temperature vortex liquid phase. The domain size distribution and the roughness exponent of the
lattice in the DR are also calculated. The results are compared with some of the recent Bitter decoration
experiments.
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. INTRODUCTION first ordert?~2® The BG also undergoes a melting transition
to VL on increasingr.

The vortex state in type-1l superconductors is a paradigm In D=2, the BG phase is unstable to the formation of
for studying the effect of quenched disorder in condensediislocations and the positional quasi-long-range order is
matter. Over the last decade, much of the effort has beedestroyed®'’ However, for weak pinning and at low tem-
made on characterizing the various phases of the vortex stafeeratures, the unbound dislocations appear only at large
as a function of the magnetic fieBland the temperaturé.  length scaleép>R,, whereR, is the “random manifold”

For three-dimensional3D) vortex systent, three phases length scale and is the distance at which positional correla-
have been identified unambiguoudi* the Bragg glass tion begins to deca¥? On length scales shorter thadg, the
(BG) with quasi-long-range order, the amorphous vortextopologically ordered lattice forms a quasi-Bragg glass
glass(VG), and the vortex liquidVL). The VG and the VL (gBG). Such a gBG shows an exponentially sharp crossover
are distinguished by their superconducting and ohmic reto the high-temperature VL phad®,reminiscent of the
sponses, respectively. Experiments in highsuperconduct-  “melting” transition of the pure system. A similar exponen-
ors suggest that the BG phase appears in theBaamd low-  tial crossover was proposed between the gBG and the VG
T region, whereas the VG phase occupies the lighnd phase as a function d, or pinning strength.

low-T region of theB-T phase diagram. The VL phase ap- The real-space structure of the vortex system has been
pears close to the upper critical fiel,(T). studied using neutron diffractié?r?2 and Bitter decoration

The first detailed calculation of the real-space structure obf vortices?®>~26 The latter technique allows direct visualiza-
the vortex lattice in the presence of quenched impuritiess  tion of the large-scale structure of the configuration and
carried out by Larkin and Ovchinnikbv(LO). The LO  hence enables one to analyze the role of topological defects
theory assumes that for the weak pinning, the vortex lattice isn the decay of translational order. Recent decoration
coherently pinned within a volumé,. BeyondV,, the ef-  experiment&®?®of NbSe, have raised some important issues
fect of impurities dominates and the long-range positionakoncerning the nature of the disordered phase. Previous
order is lost. It was further proposed that when the vortexransport measuremeffson the same samples of NbSe
displacement becomes of the order of lattice constant, topasuggested an order-disorder transition on increa&ng@r
logical defectgdislocations irD=2 and dislocation loops in T). Fasanoet al. showed that the spatial configuration of
D=23) are generatefiLater calculations by Giamarchi and vortices does not show any significant difference between the
Le Doussal® (GLD) showed that the LO calculation overes- ordered and the disordered vortex phases identified in Ref.
timates the effect of impurities at large distances and th7. More importantly, both phases were found to be poly-
vortex displacement grows only logarithmicalfpr 3D vor-  crystalline with dislocations forming grain boundaries.
tex system The positional correlation decays &3(r) Within each grain, the lattice shows significant bond orien-
~1/r”, where 5 is a nonuniversal exponehtThe quasi- tational order. This is in contrast to the naive theoretical pic-
long-rangeC(r) leads to a topologically ordered phagke  ture of the ordered phase which expects a dislocation-free
Bragg glasg which is stable with respect to the formation of configuration, and the disordered phase in which the distri-
defects® On increasingB (or the pinning strenglhthe LO  bution of the dislocations is expected to be homogeneous.
and GLD theories predict proliferation of topological de- In this paper, we analyze in detail the real-space configu-
fects, thus forming the VG at high field5.The transition ration of the disordered phase using numerical simulation of
between the BG and the high-field VG is predicted to be ofa 2D vortex system af =0. The magnetic field8 is varied

0163-1829/2004/62)/0245269)/$22.50 69 024526-1 ©2004 The American Physical Society



MAHESH CHANDRAN, R. T. SCALETTAR, AND G. T. ZIMANY!I PHYSICAL REVIEW B 69, 024526 (2004

over a wide range for various values of the pinning strength We use the reduced magnetic fidde- B/B.,, where the
A. The real-space configuration shows that for the intermeupper critical fieldB.,= ¢o/2m¢5 andé,=£(B=0,T=0). b
diate field range, the system shows inhomogeneous disordgs  calculated from the lattice constantag/\,
ing. The majority of the dislocations are confined to the grain_ (471\3)"2(1/k?b)Y2. The Ginzburg-Landau parameter
boundaries which forms the domain wall between regions oL /¢ is an input to the simulation. The magnetic-field de-
ordered lattice. The domain siz€ and its 'dIStrI.butIOI"] IS de.penbendence of the length scali®sand ¢ follows the relation
O e fefer i termedite Telds FLAIER (1)~ 1(0)n, and (5~ (0} respectvey. The reno
d . malization factorf (b) = (1—b?) ~¥2 This form of the renor-

The DR is distinct from the amorphous regime at low fields " ." " N
1S ISt phous regi w Il [gallzatmn factor is similar to the temperature dependence of

and high fields, where the defects appear at a length scal ) . .
~a, (lattice constantand its distribution is homogeneous ¢and\ in tye C}mzburg-Landau thedii““th T/TC replaced
c2)°. Similar form of the renormalization factor for

over the entire system. Analysis of the real-space imagegy (B/B ) )
suggests domain wall roughening as a possible mechanisth Nave been used in Ref. 30. The parameters used in the
for the crossover between the DR and the high-fields amorSimulation arex=10 andxo=1000 A, which are close to
phous regime. We also obtained the roughening expofient the values for the lovik, superconductors, particularly
of the vortex lattice in the domain regime. Finite-temperaturd\bSe. Periodic boundary conditions are imposed in both
simulation shows that the domain regime undergoes a shanrections, and the minimum image convention is followed.
crossover to the highi-liquid phase, which is reminiscent of The magnetic field is varied by changing the size of the
the thermal melting in the pure vortex system. simulation box, keeping the number of vortichlg=4096
The paper is organized as follows. In Sec. Il, we discusdixed. Simulations were also performed usiNg between
the simulation approach in detail. The results and the analy800 and 1200, and for some parametsgys- 6400 was used
sis of the real-space configuration are presented in Sec. lltp check for the finite-size effects. Thé, is distributed ran-
followed by conclusions in Sec. IV. domly betweem +0.01, whereA =(U,). The range of the
pinning potential ,= &,. In this paper, we present results for
pin densitynp=2.315}\(2). For T=0, Eq.(1) is time inte-
grated by the predictor-corrector scheme, and the finite-
We consider a 2D cross section perpendicular to the magemperature simulation is performed using Heun's meftiod.
netic field B=BZ of a bulk type-Il superconductor in the Th_e S|mu_lat|on at high vortex de_nsmes requires long compu-
mixed state. Within London’s approximation, the vortex cant@tional time and parallel algorithms were employed to re-

be considered as a point particle with the dynamics governed!ce the run time. Details of the implementation of the par-

by an overdamped equation of motion allel algorithms can be found in Ref. 32.
The real-space configuration is characterized by the topo-

logical defect densityldlxé (number of defects per unit area

% —_ 2 VUY(r,— 1) — 2 VUP(r,—Ry) + Fey+ £ (1) of the simulation box Below, we also use the defect fraction
7 dt =i R PO TextTARY £, which is defined as the number of defects per vortex. The
(1) defects are defined as vortices with coordination number
other than 6 and are identified by Delaunay triangulation of
Here, 5 is the flux-flow viscosity. On the left-hand side, the the real-space position of the vortices. In 2D systems, the
first term represents the intervortex interactid#’(r)  vortices with coordination number 5 and 7 are disclinations.
=(¢§/8w2)\2)K0(7/)\), whereK, is the zeroth-order Bessel A 5-disclination and a 7-disclination separated by a distance
a, forms a bound pair which is an edge dislocation. Over

H ir —(r2 2\1/2 H
Iﬁgc)tlogﬁ;gd;;a(rth: zgerzetfaﬁoonls dtehetrflu;(ngutigtugh:pednc most of the field range, the fraction of free disclinations is
P P %egligibly small and the majority of the defects are edge

length of the superconductor, respectively. This form of the . . - .
intervortex interaction includes the finite core size of thedIS|ocat'0nS' Hence, the defect density is approximately

vortex2® The second term represents vortex pinning b ara’gwice the dislocation density in the system. The hexatic order
boli ' tential I h gup U1 f_l gf Y Pard, ihe system is quantified by the sixfold orientational order
olic potential wells, whereU®(r)=Uo(r/r,—1) for r aramete¥ == ;;,e%%i|, where 6;; is the angle between
<rp, and 0 otherwise. The pinning centers are randoml

" . . . . he nearest-neighbor vortices relative to a reference axis.
located at position®, in the simulation box. The third term The simulation is performed by two different methods. In

Fext= (1/€)IX ¢z is the Lorentz force experienced by the the first method, we start with a perfect vortex lattice and the
vortex due to the transport current density The thermal  driving currentl(«J) is reduced to 0 from a value much
noise is represented byl with ({;(t))=0, and greater than the depinning currdpt This is referred as the
(&ip(0 )0 (1)) =2kgT 76 ppy 8(t—1t"), where T is the  current annealindCA) method. In the second method, the
temperaturekg is the Boltzmann constant, amp’=X,y.  conventional thermal annealif@A) is applied wherein the
The length is in units ok (B=0,T=0)=X\,, and the tem- temperatureT is reduced to 0 in small steps from the high-
peratureT is in units of\of o /kg, Wherefo= ¢3/872\3. The  temperature liquid phas@lso known as simulated anneal-
current densityd and the velocityv of the vortices are in ing). Experimentally, the TA is equivalent to the field cooling
units of cfy/ ¢y andfy/ 7, respectively. Also, the prefactor procedure. We have shown previouSlyhat the configura-
for the pinning potential, is scaled byfy/\,. tion obtained by CA is stable to small perturbations com-

II. SIMULATION METHOD
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Ak “‘,é.'eé%gf:;f (2 lattice is formed in regions less than 3agwide. Forb
RO ! =0.2, the defect distribution becomes inhomogeneous. The
> LR PO RN " R . .
2 a'f_a% o Cois Do dislocations come closer to form a network of grain bound-
g FEATATATAT RS i . .
RS ety aries across the system. Ao=0.4 andb=0.5, we find that
pa g T A . . . .
EREERERD g ~90% of the dislocations in the system are confined to the
P AL AN o s . . . .
E LS PR DO Bkl LR AR grain boundaries whereas10% of the dislocations are free

within the domains. We also find that5% of the disloca-
tions within the grain boundaries unbind into disclinations,
which occurs generally at the intersection of the grain bound-
aries. Though the free disclinations are absent in the system,
it does not lead to a long-range hexatic order in the system.
For b=0.6, we find¥¢~0.14, and for other values of the
field ¥4<0.05 (for a perfect vortex latticeWg=1). The
TR o ; small value of¥'¢ is caused by the random orientation of the
5 domains which destroys the long-range orientational order.
We call the intermediate field range in which the system
breaks into regions of ordered lattice the DR. The DR is
configurationally distinct from the conventional picture of a
disordered state for which the distribution of topological de-
fects is homogeneous. In the DR, the system is quasiordered
on the length scale of the domain siRg. The vortex lattice
shows translational and orientational ordeithin the do-
FIG. 1. (Color onling The real-space configuration of vortices mains, even though the long-range order is absent in the
in a region of the simulation box. The valuestfire(a) 0.1, (b)  system. Figures(b)—1(d) shows real-space configurations in
0.4,(c) 0.5, (d) 0.6, (e) 0.8, and(f) 0.9. The blackired and gray the DR asb is increased.
(plue) dots denote vortices with seven and five neighbors, respec- For b>0.6, the defect density increases rapidly with the
tively (Ref. 35. Forb=0.1, N,=900, and for the rest of the im-  oncomitant decrease in the domain size. Small domains of
agesN,=4096. The pinning strength =0.02. ordered lattice of width 3—d, can be seen untth~0.8, as
evident from Fig. 1e). Increasingb=0.8, the system be-
pared to the configuration obtained by TA. This is also SUPtomes amorphous with an average d|3taﬂ% between the
ported by experiment¥, which show that the field cooled defects. The defect distribution is homogeneous throughout
state is unstable to small driving forde<I. and a stable the system, and the configuration is similar to a frozen liquid.
configuration is obtained when the system is brought to resA typical real-space configuration is shown in Figf)1The
after driven withI>1.. The two methods, CA and TA, are fraction of free disclinations is significantly higher than that
compared in Sec. I B. observed in the DR but it is difficult to isolate them from the
dense network of defects. The vortices with coordination
number 4 and 8 accounts fer6—-8 % of the total defects.
Overall, the real-space images in Fig. 1 suggests a reentrant
A. Zero-temperature simulation change in the configuration, from a low-field amorphous to

In this section, we analyze the zero-temperature configuz-’m intermediate field quasiordered state, which finally

rations obtained by the current annealing method. The sy crosses over to a high-field amo_rph.ous. state.

tem is slowly brought to rest across the depinning current for In the DR, the average (_jomam 5'3@ IS deper_1dent Qb
each value of the magnetic field In the absence of thermal andgA. Rd_%S—?aO for low fields and increases in th_e Inter-
fluctuations, the vortex configuration is determined by themEdIate f'e“.j range. Fob=0.6 andAzO.(_)Z, the size .Of
balance between the long-range elastic force and the pinnin me domains exceeds &) By decreasing the pinning

force. We first show the real-space images of the configura _rengthA to O'Ql' we find a remarkably well-ordered lattice
tion as the magnetic field is increased. with no topological defects for the system sMg=6400, as

shown in Fig. 2a). This suggests that for sufficiently weak
pinning strength, large domains of ordered lattice, compa-
rable to sample size in typical experiments, can exist in 2D.
Figure 1 shows the Delaunay triangulation in a region ofFigure Za) should be compared with Fig(l® which shows
the simulation box for various values of the magnetic field.the meandering grain boundaries formed by the defects for
The pinning strengt =0.02, andN,=4096, except fob ~ A=0.02. With increasing\, Ry decreases from=20a, for
=0.1 for whichN,=900. At small fieldsb=0.1, the defect A=0.02 to~3-5a, for A=0.075. This is shown in Fig. 3.
distribution is homogeneous over the entire system and thEor strong pinning, the dislocations tend to cluster in some
configuration is amorphous. The defect fractiommber of  regions implying that individual pinning centers locally tear
defects per vortexf 4>0.35 at these low fields. the vortex lattice. With increasingd, the field range over

Ill. RESULTS AND DISCUSSIONS

1. Real-space configuration
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FIG. 2. (Color online The real-space configuration of vortices
in a region of the simulation box fak=0.01(a), and 0.02b). The
N,=6400. In(b), only the defects are shown.
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samples across the order-disorder transition by the Bitter
decoration techniqué:?® The order-disorder transition was FIG. 3. (Color online The vortex configuration in a region of
previously identified in transport measurements and havehe simulation box fobh=0.6 and forA=0.03 (a), 0.04 (b), 0.05
been speculated to underly the peak effect in the critical curec), and 0.075d). The number of vorticedl, = 4096.

rent density’ The decoration images show that the vortices

form large ordered domains. The domains are separated by

domain walls, which are defined by chains of dislocationsmethod, the domain boundary in many cases could be deter-
This domain formation is present throughout B€T plane  Mined with reasonable accuracy. This procedure is intended
(below the melting ling hence the authors summarized theirto be instructive rather than decisive, as it contains some
findings as the “absence of amorphous vortex matter.”arbitrariness. For example, in some regions the domain walls
Fasancet al. found that~85-90 % of the defects are in the are wider tharg, and then the misorientation angle is split
grain boundaries, whereas the remaining defects are isolat@$ross the domain wall. Also, this method does not count the
dislocations. All of these findings are consistent with ourreally small-angle domain walls, those with<12°.

numerical findings and estimates in the intermediate field The area of the enclosed domains is used in creating the
range forA=0.02. N(syq) histogram. Figure 5 shows the histogram plot of

N(sy) for various values of the magnetic field The total

number of vorticesN,=4096 andA=0.02. At small and

) ] ) ~_ large fields, the histogram can be adequately characterized
A useful quantity to characterize the DR is the distributionpy 3 single parameter, e.g., its half width. The distribution is

of the domain sizéN(sy), where the area of the domasgis  re|atively narrow with few large domains. For the intermedi-

in units ofag. Unlike in lattice models, extractin(sq) in  ate fields, theN(s,) exhibits a broad distribution with sub-

models with continuous symmetry is not straightforward.stantial weight toward the tail region. This suggests that
The lattice vectors can change continuously from domain to

2. Domain size distribution

neighboring domaimvithoutnucleating defects, which makes (a) (b)
it difficult to define the domain wall. In many cases, the %
domain walls, which are formed by the grain boundaries are i 16

not closed. Analysis of the real-space configuration suggests
that the domain walls are generally composed of two types
of grain boundaries, depending on the misorientation angle
04 between the neighboring domains. For the small-angle 5
grain boundariesf4~10°-16°, and the dislocations are
separated by 3-&. In large-angle grain boundaries, the
dislocations form closely packed stringlike structures, and
04>20°. Typical domains and domain walls formed by the
grain boundaries are shown in Fig. 4. B

To extractN(sy), we used the following procedure to (d)
define domain walls in regions where the dislocations are =
apart. The misorientation anglg is obtained between suc-  FIG. 4. (Color online The domain walls in the real-space con-
cessive vortices along one of the lattice vectors connectingguration.(a) and(b) shows small angle grain boundaries, whereas
neighboring domains. 184 is between 12° and 18°, then the large angle grain boundaries can be seefcjrand (d). The mag-
vortex is considered as part of the domain wall. With thisnetic fieldb=0.50 for (a) and(d), and 0.65 for(b) and (c).
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The Cgg is the shear modulus of the vortex lattice and the
average pinning forcé~A/r,, wherer, is the range of the
pinning potential as defined in Sec. Il. For tkg(r/\) po-
tential, the field dependence of the shear modulus have been
derived® and is given ags~ B/ (4m\)%(1—b)?. In di-
mensionless units, the. becomes

R. 1 K2 b3/ 2
a_o (2m )3/2f b T (1-b)% (4)

The R, increases witth and attains a maximum before de-
creasing ab—1.
The r <R, regime is often referred as the random force
2 400 0 200 400 (RF) regime. The roughness exponent in this regime is given
¢ ¢ by = 4 D/2 for a D-dimensional system. Thug?=1
FIG. 5. The histogram plot of the domain size distribution and Z32=0.5 for 2D and D systems, respectively.
N(sg), Wheresy is in the units ofa3. The values ob are(a) 0.3, (b) (2) Rc<r<Ra: BeyondR,, the displacement(r) con-
0.5,(c) 0.7, and(d) 0.8. TheN,=4096 andA =0.02. tinues to grow but with smaller exponerR, defines the
length scale at which the positional correlation begins to de-
more than one parameter is required to characterize thesay, i.e., the displacemeni(r =R,)~ay. BetweenR, and
distributions, especially the excess weight in the tail regionR,, the system is in the random manifol&M) regime. In
this regime, the roughness exponent have been obtained us-
3. Roughness exponent ing a Flory type argumeft® which givesgﬁ?f 1. Amore

The interaction of the vortex lattice with the quenchedrefined scaling argumefitgives {zy=0.4. For weak pin-
impurities leads to displacement of the vortices from theiring, the lingth scaleR}, and R are related byR,
perfect lattice position. An important quantity which charac-"" Re(ap/&) ™ Ru

terize the change in the position of the vortices is the relative (3) R.<r<ép: Beyond R,, W(r) grows as® W(r)
displacement correlation, defined as ~In?(r) as derived through a variational approach and con-

firmed by replica symmetric R@ef. 41), assuming the lack
5 of dislocations at these scal®This growth form holds up
W(r)=[u(r)—u(0)]%, (2) to the length scal€p, at which unbound dislocations ap-
pear. For weak pinninggp>R,,*®

0 200

where the overbar represents the average over quenched i
purities. Theu(r) is the displacement of the vortex relative 1 R
to its position in the perfect lattice. The positional order- §D~Raexp{ (——ao)ln( a)
parameter correlation€g(r) can be expressed in terms of

W(r) asCG(r)~e‘GZW(r)’2, whereG is one of the recipro- wherec is a temperature-dependent numerical constant and
cal lattice vectors. For the crystalline stateN(r)=0 and ¢, is the impurity strength. FoR,>a, and low tempera-
Cs(r)=1. The effect of the quenched impurities is to in- tures, &, can become exceedingly large and the system ap-
creaséV(r) and hence reduce the positional order-parametepears similar to the BG phase in 3D.

: ®)

dp

correlations of the lattice. The structure factor@t mea- (4) ép<r: Beyondép, unbound dislocations lead to ex-
sured in the neutron-scattering experiments, is related to theonential decay of the positional correlation and the system
Fourier transform ofCs(r). is disordered.

The roughness of an elastic medium is parametrized by We have obtained the length scale and the roughness ex-
the exponent, which is defined asV(r)~r2¢. In the flat  ponent of the vortex lattice in the DR. The relative displace-
phase of the mediuti<O0, and in the rough phage>0 [the  ment correlationW(r) was calculated using the following
=0 gives logarithmic roughening witi/(r)~Inr]. For a  procedure. First, a crystalline state with the lattice constant
2D vortex system, there are three length scales which emergmrresponding to the value &fis constructed using one of
in various theories depending upon the displacemén}. the vortex coordinates, in the real lattice as the origin. The

(1) r<Rg: In the collective pinning theo”RR. represents mean-square displacement between the perfect lattice and the
the size of the region in which the vortex lattice is coherentlyunderlying real lattice is then minimized by varying the ori-
pinned by the impurities. More preciselR; is the length entation of the perfect lattice relative to the real lattice. The
scale at which the displaceman(tr =R.)~ ¢. R, is obtained  u(r) is then computed for each of the vortices. This proce-
by minimizing the total energyelastic energy+ pinning  dure is repeated for differemng’s, and thewW(r) is computed
energy and is given by by averaging over alty’s.
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FIG. 6. TheW(r)/a3 as a function of /a, for A=0.01 forN,
=6400. The inset shows the same foy=4096. TheW(r)~r2
where the exponen is shown for the RF regime and the RM

regime.

Figure 6 shows the plot oW(r)/aS for b=0.6 andA
=0.01 for N,=6400. W(r) for N,=4096 is shown in the
inset. For these parameters, even the lartest 6400 sys-
tem is free of dislocationfsee Fig. 2a)]. Due to periodic
boundary condition, the length scale probed in the simulation
is half the system size, which fod,=6400 and 4096 are
40a, and 32, respectivelyW(r) shows an initial power-
law increase with an exponerdt=0.65—-0.72. The system
exhibits a crossover around ~4-5a, into a regime where
the increase ofW(r) is slower. Between & =<r =153, the
exponent i$~0.40-0.42. For = 16a,, the growth ofW(r)

slows down considerably.

It is plausible that* =R;, where the system crosses over
from the RF regime to the RM regime. This can be verified
by calculatingR, using Eq.(4), which gives a value=4a,
for b=0.6, in reasonable agreement with the value*afIn
our systemé=0.1\,, and atb=0.6 the lattice constard,
=0.34Ny. From Fig. 6,u(R.)~0.28;~0.07\q, thus con-

firming thatu(r =R;)~¢.
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in the asymptotic regime. This behavior unfortunately could
not be verified due to insufficient range of data points. In
sum, we identify ther ~1a,—5a, as the RF regime, the
~b5ay—15, as the RM regime, and>15a, as the
asymptotic regime.

The value of{~0.65-0.72 obtained from the simulation
in the RF regime is smaller than the theoretical prediction for
£22=1. We speculate that the interactiia(r/\) between
the vortices in 2D increases the stiffening of the vortex lat-
tice at short distances which leads to weaker roughening. In
the RM regime, the exponefjt=0.40-0.42 is in good agree-
ment with the value of 0.4 expected from the scaling
argument?® Using ¢22,=0.4, the value oR,~ 15a, is much

smaller than the valuB,~ Rc(aolg)lfé”é?n_ The small size of
the RM regime is possibly related to the large magnetic field
b=0.6 used in obtainingV(r). For this field,ay is compa-
rable to &, and R, is large compared to smaller magnetic
fields. The RM regime is expected to disappear dgt= &,
and have been shown in the case of 3D system.

An interesting outcome of the above analysisVéfr) is
that the average domain siBg>R., and hence, the collec-
tive pinning theory cannot account for the appearance of do-
mains in the intermediate fields. The asymptotic regime in
W(r) suggests that the gBG theory is qualitatively correct.
Within the gBG theory, the distribution of dislocations be-
yond the length scaléy is expected to be homogeneous,
unlike the grain-boundary formation observed in our simula-
tion. One possible way to account for the grain-boundary
formation is to consider the long-range interaction between
the dislocations. Since the interaction between the disloca-
tions is anisotropic, for some values of dislocation density,
the grain boundaries may lead to a lower-energy state. This is
also supported from a recent work on dipole systé&tmst
low densities, the dipoles exhibit a gaseous phase, and their
distribution is roughly homogeneous. At higher densities the
phase is characterized by dipoles forming chains or strings.
Since the dislocations of the vortex lattice are in fact dipoles
of disclinations, these results are quite analogous to our iden-
tification of a domain regime in the vortex matter.

Beyond R., the length scaleR, of the RM regime is
defined asu(r=R,)~a,. This translates th(r)wO.lZaS

for b=0.6. From Fig. 6, we find that/(r) flattens at=0.1
atr~13a, for N, = 6400, which suggests thR,~ 13a, (for
N,=4096, R,~18ay). Beyond R,, the slow growth of

4. Defect density

The three field regimes discussed in the context of the
real-space configuration can also be inferred from the behav-

W(r) indicates the appearance of the asymptotic regimeior of the defect densityy(b). Figure Ta) showsngy(b) for

Within the qBG theory, W(r) is expected to grow as 4r)

A=0.02 andN,=4096. The behavior for smaller system

T T T T
L (a) A=0.02
101 ...x Simulation, N, =4096
| e Simulation, N = 800-1200

04t ®

It
[\
T

FIG. 7. (a) The topological defect density
ny(b) for A=0.02 andN,=4096. Also shown is

1 the ny(b) for the smaller system sizéb) The
7 f4(A) for b=0.6. Inset: The plot of 4 as a func-

11 tion of N, * for A=0.02 andb=0.6. There is a

critical system size below which dislocations are

not present in the system.
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there exists a critical\; below which dislocations are not
favored. This is observed in the simulation, as shown in Fig.
7(b) where the defect fractiohy(A) (number of defects per
vortex is plotted forb=0.6. For the smaller systemN,
=900, f4 goes to zero at .= 0.03, and the system exhibits
an ordered phase fatx<A.. Increasing\, to 4096 reduces
A. to 0.01, and in the asymptotic lim\,—o (hence,L
—o), we expectA.—0. In the DR,fy does not increase
FIG. 8. (Color onling The domains in a region of the simulation continuously with increasing_(ochf/Z) but shows a sharp
box for (&) b=0.7 and(b) 0.8. TheN, =4096 andA =0.02. jump from the dislocation-free state to the domain state at a
characteristic system size as shown in the inset of Rig. 7
sizes (\,=800-1200) is also shown on the same plot. The
ng(b) increases linearly in the low-field amorphous regime. 5. Crossover from DR to high-field amorphous regime
Above a crossover field,~0.1, ny(b) flattens and becomes

weakly field dependent inNthe DR. F&r=0.6, ng(b) in- o0 the DR to the high-field amorphous regime. To under-
creases rapidly, and abobig~0.8 the system Crosses Over {0 gyanq the mechanism for this sharp crossover, we identified

the high-field amorphous regime. It is possible to define 8, qomains and the domain walls betwden 0.5 andb
length scald.~ny %, as the nominal average defect sepa-_ g for A=0.02. For the intermediate fields~0.5-0.6
ration. Forb= 0.6 (domain regimgL 4~ 3a,, which is much ¢ grain boundaries are generally smooth angb) is’
smaller than eveR. and does not correspond to any featurewe(.ﬂdy field dependent. Fd=0.6, the rapid increase in
in the real-space configuration, and reflects the highly inhop, ) ‘occurswithin the domain walls. Consequently, the do-
mogeneous nature of the defect distribution in the domaifyain wall length increases, which is accommodated through
regime. On the other hand, in the high-field amorphous regnpanced roughening of the domain walls. This is evident
gimeL4~a,, which is also the distance between the defectsom Fig. gb). The increase in the roughening also facilitates
thus reflecting homogeneity of the distribution of defects.  the unpinding of the dislocations into free disclinations and
The ngy(b) in Fig. 7(&) shows strong similarity with the —gpsequently drives the crossover into the VG state. In such
experimental observation in 2D system of magneticy scenario, we conjecture that domain walls undergo disorder
bubbles” In Ref. 44, the intermediate regime was inter- griven roughening transition at the crossover between the
preted as the hexatic phase and the high-field amorphoysr ang the high-field VG. It would be of interest to obtain

regime as the isotropic liquid phaSeLater simulatiof® also  the domain-wall roughening exponent across the crossover
suggested &=0 dislocation unbinding transition driven by egime.

disorder. As discussed above, the presence of domain walls
(grain boundarigsin our system suppresses the long-range
orientational order. This rules out the possibility of a transi-
tion between the hexatic phase and the isotropic liquid phase In this section, we compare the current annealing method
as the underlying reason for the rapid increasenjb). with the conventional simulated annealing method, as it is
However, a rapid crossover, similar to that predicted betweewell known that different sample preparation techniques can
the qBG at low temperatures and vortex liquid at highresult in the vortex system not reaching its equilibrium
temperature&’ is still possible between the DR and the high- configuratiort®#8 In the latter method, the temperatuFes
field amorphous regime, especially at weaker pinning whereeduced from the high-temperature liquid phase slowly so as
the domain siz&R, is large?’ to reach thermal equilibrium at each valueTofThis method

For smaller system sizé\(,=800—1200), a topologically is commonly used to search for the ground state of disor-
ordered phase appears in the intermediate field range itered systems.
whichnyg=0 [see Fig. 7a)]. This is a finite-size effect, which For the thermal annealing, the system was equilibrated for
reflects the sensitivity of the DR to the system sizeFor 5% 10°~1x 10 time steps before averaging over a similar
L<¢&p, the DR can appear as a topologically ordered statéime scale to calculate the defect fractity{T). The number
free of dislocations. This implies that for a given system sizepof vorticesN, =900 andA=0.03. For this system size, the

As discussed above, they(b) shows a rapid crossover

B. Finite-temperature simulation

A=0.03, T=0
0.6 i

d

o—e thermal annealing (TA) FIG. 9. (Color onling (a) The defect fraction
o--o current annealing (CA)

fq(T) for various magnetic fielddb with A
=0.03. The temperatur& is decreased slowly
from the highT liquid phase.(b) The f4(b) at

- T=0 obtained from thermal annealing and cur-
rent annealing.

0.2

\
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CA method gives a topologically ordered phase lfobe-  peak shifts toward the origin. For weak pinning, the size of
tween 0.6 and 0.75. Figure(@ showsfy(T) for various the domains can become exceedingly large.
values of the magnetic field. As the temperature is lowered, The domain regime is bounded by an amorphous regime
for b=0.2 f4(T) decreases monotonically to a finite value at low fields and high fields. The defects in the amorphous
with dfy4/d T slowly varying. There is no evidence of a tran- regime are separated by the smallest length sealg and
sition as a function of the temperature. With increaginthe  show homogeneous distribution unlike the grain-boundary
slow freezing is replaced by a sharp decreasg,() at a formation in the domain regime. The domain regime shows
particular temperatur&,,, similar to the equilibrium melting rapid crossover into the high-field amorphous regime. From
transition. Forb=0.65, f4(T) at T, decreases by=76% of the changes in the configuration, we identified the roughen-
the value abové& ,,. Forb>0.8, the meltinglike transition is ing of the domain walls as the plausible mechanism driving
again replaced by slow freezing of the high-temperature ligthe rapid crossover.
uid phase. The relative displacement correlativ¥(r) in the domain

In Fig. 9b), f4(b) at T=0 obtained by TA is compared state was also calculated for weak pinning. Three distinct
with that obtained by CA. At intermediate fields, the ther-regimes were observed: a random force regime, a random
mally annealed samples exhibit the presence of dislocationmanifold regime, and the asymptotic regime. Crossover from
already at these smaller system sizes. As described abovw@ndom force regime to the random manifold regime is found
the current annealing method requires larger system sizes to occur atR.~4-5a,. The value ofR. agrees with that
correctly display this same phenomenon. Otherwise, the twobtained from the collective pinning theory. The roughness
curves track each other very closely over most of the fieldexponent{ in the random manifold regime is found to
range, including the low-field slow decay 6f(b) and the ~0.40, within the range of various theoretical predictions.
rapid rise at high fields. For the intermediate fields, The The observation of random manifold and asymptotic re-
=0 configuration obtained from TA also shows grain- gimeswithin the domains for weak pinning suggests that the
boundary formation, similar to that observed from the CAvortex lattice is correctly described by the gqBG idea, though
method. the exact form of theWN(r) could not be ascertained. At

length scales greater than the domain size, the appearance of
IV. CONCLUSION the domain wall formed by dislocations is not captured by

) ) ) the quasi-Bragg glass theory. Therefore, it remains to be seen
We have presented a detailed numerical analysis of th@hether besides the domain regime the 2D vortex matter

real-space configuration of 2D vortex system in the presencgypports a quasi-Bragg glass where the dislocations are ho-
of quenched impurities. For weak pinning, the disorderednogeneously distributed.

state in the intermediate field range is inhomogeneous. The
majority of the dislocations in this state are confined to grain
boundaries, which form domain walls between regions of
topologically ordered vortex lattice. There are no free discli-
nations in the system. This state is referred as the domain M.C. acknowledges useful discussions with E. Zeldov and
state and the intermediate field range as the domain regimé. K. Grover during the course of the work. G.T.Z. thanks Y.
The domain size distributioN(sy) was calculated in the Fasano, T. Giamarchi, J. Kierfeld, P. Le Doussal, and T. Nat-
domain regime.N(sq) shows a broad distribution with a termann for insightful discussions. M.C. would also like to
large weight in the tail region at intermediate fields. There-thank the University of New Mexico for access to their Al-
fore, more than one length scale is required to properly chabuquerque High Performance Computing Center. The simu-
acterize the domain size distribution in the domain regimelation was performed on the UNM-Alliance Supercluster.
With increasingb, the distribution becomes narrow and the This work was supported by NSF-DMR Grant No. 9985978.
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