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Domain regime in two-dimensional disordered vortex matter
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A detailed numerical study of the real-space configuration of vortices in disordered superconductors using
two-dimensional London-Langevin model is presented. The magnetic fieldB is varied between 0 andBc2 for
various pinning strengthsD. For weak pinning, an inhomogeneous disordered vortex matter is observed, in
which the topologically ordered vortex lattice survives in large domains. The majority of the dislocations in
this state are confined to the grain boundaries/domain walls. Such quasiordered configurations are observed in
the intermediate fields, and we refer it as the domain regime~DR!. The DR is distinct from the low-field and
the high-fields amorphous regimes which are characterized by a homogeneous distribution of defects over the
entire system. Analysis of the real-space configuration suggests domain-wall roughening as a possible mecha-
nism for the crossover from the DR to the high-field amorphous regime. The DR also shows a sharp crossover
to the high-temperature vortex liquid phase. The domain size distribution and the roughness exponent of the
lattice in the DR are also calculated. The results are compared with some of the recent Bitter decoration
experiments.
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I. INTRODUCTION

The vortex state in type-II superconductors is a parad
for studying the effect of quenched disorder in conden
matter. Over the last decade, much of the effort has b
made on characterizing the various phases of the vortex
as a function of the magnetic fieldB and the temperatureT.
For three-dimensional~3D! vortex system,1 three phases
have been identified unambiguously:2–4 the Bragg glass
~BG! with quasi-long-range order, the amorphous vor
glass~VG!, and the vortex liquid~VL !. The VG and the VL
are distinguished by their superconducting and ohmic
sponses, respectively. Experiments in high-Tc superconduct-
ors suggest that the BG phase appears in the low-B and low-
T region, whereas the VG phase occupies the high-B and
low-T region of theB-T phase diagram. The VL phase a
pears close to the upper critical fieldBc2(T).

The first detailed calculation of the real-space structure
the vortex lattice in the presence of quenched impurities5 was
carried out by Larkin and Ovchinnikov6 ~LO!. The LO
theory assumes that for the weak pinning, the vortex lattic
coherently pinned within a volumeVc . BeyondVc , the ef-
fect of impurities dominates and the long-range positio
order is lost. It was further proposed that when the vor
displacement becomes of the order of lattice constant, to
logical defects~dislocations inD52 and dislocation loops in
D53) are generated.7 Later calculations by Giamarchi an
Le Doussal3,8 ~GLD! showed that the LO calculation overe
timates the effect of impurities at large distances and
vortex displacement grows only logarithmically~for 3D vor-
tex system!. The positional correlation decays asC(r )
;1/r h, where h is a nonuniversal exponent.9 The quasi-
long-rangeC(r ) leads to a topologically ordered phase~the
Bragg glass!, which is stable with respect to the formation
defects.10 On increasingB ~or the pinning strength!, the LO
and GLD theories predict proliferation of topological d
fects, thus forming the VG at high fields.11 The transition
between the BG and the high-field VG is predicted to be
0163-1829/2004/69~2!/024526~9!/$22.50 69 0245
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first order.12–15 The BG also undergoes a melting transitio
to VL on increasingT.

In D52, the BG phase is unstable to the formation
dislocations and the positional quasi-long-range order
destroyed.16,17 However, for weak pinning and at low tem
peratures, the unbound dislocations appear only at la
length scalejD@Ra , whereRa is the ‘‘random manifold’’
length scale and is the distance at which positional corr
tion begins to decay.18 On length scales shorter thanjD , the
topologically ordered lattice forms a quasi-Bragg gla
~qBG!. Such a qBG shows an exponentially sharp crosso
to the high-temperature VL phase,19 reminiscent of the
‘‘melting’’ transition of the pure system. A similar exponen
tial crossover was proposed between the qBG and the
phase as a function ofB, or pinning strength.

The real-space structure of the vortex system has b
studied using neutron diffraction20–22 and Bitter decoration
of vortices.23–26The latter technique allows direct visualiza
tion of the large-scale structure of the configuration a
hence enables one to analyze the role of topological def
on the decay of translational order. Recent decorat
experiments25,26of NbSe2 have raised some important issu
concerning the nature of the disordered phase. Prev
transport measurements27 on the same samples of NbSe2
suggested an order-disorder transition on increasingB ~or
T). Fasanoet al. showed that the spatial configuration
vortices does not show any significant difference between
ordered and the disordered vortex phases identified in R
27. More importantly, both phases were found to be po
crystalline with dislocations forming grain boundarie
Within each grain, the lattice shows significant bond orie
tational order. This is in contrast to the naive theoretical p
ture of the ordered phase which expects a dislocation-
configuration, and the disordered phase in which the dis
bution of the dislocations is expected to be homogeneou

In this paper, we analyze in detail the real-space confi
ration of the disordered phase using numerical simulation
a 2D vortex system atT50. The magnetic fieldB is varied
©2004 The American Physical Society26-1
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over a wide range for various values of the pinning stren
D. The real-space configuration shows that for the interm
diate field range, the system shows inhomogeneous diso
ing. The majority of the dislocations are confined to the gr
boundaries which forms the domain wall between regions
ordered lattice. The domain size and its distribution is dep
dent onB andD. We refer the intermediate fields in whic
the vortex state is quasiordered as the domain regime~DR!.
The DR is distinct from the amorphous regime at low fie
and high fields, where the defects appear at a length s
;a0 ~lattice constant! and its distribution is homogeneou
over the entire system. Analysis of the real-space ima
suggests domain wall roughening as a possible mecha
for the crossover between the DR and the high-fields am
phous regime. We also obtained the roughening exponez
of the vortex lattice in the domain regime. Finite-temperat
simulation shows that the domain regime undergoes a s
crossover to the high-T liquid phase, which is reminiscent o
the thermal melting in the pure vortex system.

The paper is organized as follows. In Sec. II, we disc
the simulation approach in detail. The results and the an
sis of the real-space configuration are presented in Sec
followed by conclusions in Sec. IV.

II. SIMULATION METHOD

We consider a 2D cross section perpendicular to the m
netic field B5Bẑ of a bulk type-II superconductor in th
mixed state. Within London’s approximation, the vortex c
be considered as a point particle with the dynamics gover
by an overdamped equation of motion

h
dr i

dt
52(

j Þ i
¹Uv~r i2r j !2(

k
¹Up~r i2Rk!1Fext1zi~ t !.

~1!

Here,h is the flux-flow viscosity. On the left-hand side, th
first term represents the intervortex interactionUv(r )
5(f0

2/8p2l2)K0( r̃ /l), whereK0 is the zeroth-order Besse

function, andr̃ 5(r 212j2)1/2. f0 is the flux quantum, and
the l and j are the penetration depth and the cohere
length of the superconductor, respectively. This form of
intervortex interaction includes the finite core size of t
vortex.28 The second term represents vortex pinning by pa
bolic potential wells, whereUp(r )5U0(r 2/r p

221) for r
,r p , and 0 otherwise. The pinning centers are random
located at positionsRk in the simulation box. The third term
Fext5(1/c)J3f0ẑ is the Lorentz force experienced by th
vortex due to the transport current densityJ. The thermal
noise is represented byz with ^z i ,p(t)&50, and
^z i ,p(t)z j ,p8(t8)&52kBThd i j dpp8d(t2t8), where T is the
temperature,kB is the Boltzmann constant, andp,p85x,y.
The length is in units ofl(B50,T50)5l0, and the tem-
peratureT is in units ofl0f 0 /kB , wheref 05f0

2/8p2l0
3. The

current densityJ and the velocityv of the vortices are in
units of c f0 /f0 and f 0 /h, respectively. Also, the prefacto
for the pinning potentialU0 is scaled byf 0 /l0.
02452
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We use the reduced magnetic fieldb5B/Bc2, where the
upper critical fieldBc25f0/2pj0

2 andj05j(B50,T50). b
is calculated from the lattice constanta0 /l0

5(4p/A3)1/2(1/k2b)1/2. The Ginzburg-Landau parameterk
5l/j is an input to the simulation. The magnetic-field d
pendence of the length scalesl and j follows the relation
l(b)5 f (b)l0 and j(b)5 f (b)j0, respectively. The renor
malization factorf (b)5(12b2)21/2. This form of the renor-
malization factor is similar to the temperature dependenc
j andl in the Ginzburg-Landau theory29 with T/Tc replaced
by (B/Bc2)2. Similar form of the renormalization factor fo
l have been used in Ref. 30. The parameters used in
simulation arek510 andl051000 Å, which are close to
the values for the low-Tc superconductors, particularl
NbSe2. Periodic boundary conditions are imposed in bo
directions, and the minimum image convention is followe
The magnetic fieldb is varied by changing the size of th
simulation box, keeping the number of vorticesNv54096
fixed. Simulations were also performed usingNv between
800 and 1200, and for some parametersNv56400 was used
to check for the finite-size effects. TheU0 is distributed ran-
domly betweenD60.01, whereD5^U0&. The range of the
pinning potentialr p5j0. In this paper, we present results fo
pin densitynp52.315/l0

2. For T50, Eq. ~1! is time inte-
grated by the predictor-corrector scheme, and the fin
temperature simulation is performed using Heun’s metho31

The simulation at high vortex densities requires long com
tational time and parallel algorithms were employed to
duce the run time. Details of the implementation of the p
allel algorithms can be found in Ref. 32.

The real-space configuration is characterized by the to
logical defect densitynd /l0

2 ~number of defects per unit are
of the simulation box!. Below, we also use the defect fractio
f d , which is defined as the number of defects per vortex. T
defects are defined as vortices with coordination num
other than 6 and are identified by Delaunay triangulation
the real-space position of the vortices. In 2D systems,
vortices with coordination number 5 and 7 are disclinatio
A 5-disclination and a 7-disclination separated by a dista
a0 forms a bound pair which is an edge dislocation. Ov
most of the field range, the fraction of free disclinations
negligibly small and the majority of the defects are ed
dislocations. Hence, the defect densitynd is approximately
twice the dislocation density in the system. The hexatic or
in the system is quantified by the sixfold orientational ord
parameterC65u(^ i j &e

6u i j u, whereu i j is the angle between
the nearest-neighbor vortices relative to a reference axis

The simulation is performed by two different methods.
the first method, we start with a perfect vortex lattice and
driving current I (}J) is reduced to 0 from a value muc
greater than the depinning currentI c . This is referred as the
current annealing~CA! method. In the second method, th
conventional thermal annealing~TA! is applied wherein the
temperatureT is reduced to 0 in small steps from the hig
temperature liquid phase~also known as simulated annea
ing!. Experimentally, the TA is equivalent to the field coolin
procedure. We have shown previously33 that the configura-
tion obtained by CA is stable to small perturbations co
6-2
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DOMAIN REGIME IN TWO-DIMENSIONAL DISORDERED . . . PHYSICAL REVIEW B69, 024526 ~2004!
pared to the configuration obtained by TA. This is also s
ported by experiments,34 which show that the field cooled
state is unstable to small driving forceI !I c and a stable
configuration is obtained when the system is brought to
after driven withI @I c . The two methods, CA and TA, ar
compared in Sec. III B.

III. RESULTS AND DISCUSSIONS

A. Zero-temperature simulation

In this section, we analyze the zero-temperature confi
rations obtained by the current annealing method. The
tem is slowly brought to rest across the depinning current
each value of the magnetic fieldb. In the absence of therma
fluctuations, the vortex configuration is determined by
balance between the long-range elastic force and the pin
force. We first show the real-space images of the configu
tion as the magnetic fieldb is increased.

1. Real-space configuration

Figure 1 shows the Delaunay triangulation in a region
the simulation box for various values of the magnetic fie
The pinning strengthD50.02, andNv54096, except forb
50.1 for whichNv5900. At small fieldsb&0.1, the defect
distribution is homogeneous over the entire system and
configuration is amorphous. The defect fraction~number of
defects per vortex! f d.0.35 at these low fields.

FIG. 1. ~Color online! The real-space configuration of vortice
in a region of the simulation box. The values ofb are ~a! 0.1, ~b!
0.4, ~c! 0.5, ~d! 0.6, ~e! 0.8, and~f! 0.9. The black~red! and gray
~blue! dots denote vortices with seven and five neighbors, resp
tively ~Ref. 35!. For b50.1, Nv5900, and for the rest of the im
agesNv54096. The pinning strengthD50.02.
02452
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With increasingb, small regions of ordered lattice sta
appearing. This can be seen forb50.1 in which ordered
lattice is formed in regions less than 3 –4a0 wide. For b
*0.2, the defect distribution becomes inhomogeneous.
dislocations come closer to form a network of grain boun
aries across the system. Forb50.4 andb50.5, we find that
'90% of the dislocations in the system are confined to
grain boundaries whereas'10% of the dislocations are fre
within the domains. We also find that'5% of the disloca-
tions within the grain boundaries unbind into disclination
which occurs generally at the intersection of the grain bou
aries. Though the free disclinations are absent in the sys
it does not lead to a long-range hexatic order in the syst
For b50.6, we findC6'0.14, and for other values of th
field C6,0.05 ~for a perfect vortex lattice,C651). The
small value ofC6 is caused by the random orientation of th
domains which destroys the long-range orientational ord

We call the intermediate field range in which the syste
breaks into regions of ordered lattice the DR. The DR
configurationally distinct from the conventional picture of
disordered state for which the distribution of topological d
fects is homogeneous. In the DR, the system is quasiord
on the length scale of the domain sizeRd . The vortex lattice
shows translational and orientational orderwithin the do-
mains, even though the long-range order is absent in
system. Figures 1~b!–1~d! shows real-space configurations
the DR asb is increased.

For b.0.6, the defect density increases rapidly with t
concomitant decrease in the domain size. Small domain
ordered lattice of width 3 –4a0 can be seen untilb'0.8, as
evident from Fig. 1~e!. Increasingb*0.8, the system be
comes amorphous with an average distance;a0 between the
defects. The defect distribution is homogeneous through
the system, and the configuration is similar to a frozen liqu
A typical real-space configuration is shown in Fig. 1~f!. The
fraction of free disclinations is significantly higher than th
observed in the DR but it is difficult to isolate them from th
dense network of defects. The vortices with coordinat
number 4 and 8 accounts for'6 –8 % of the total defects
Overall, the real-space images in Fig. 1 suggests a reen
change in the configuration, from a low-field amorphous
an intermediate field quasiordered state, which fina
crosses over to a high-field amorphous state.

In the DR, the average domain sizeRd is dependent onb
andD. Rd'5 –7a0 for low fields and increases in the inte
mediate field range. Forb50.6 andD50.02, the size of
some domains exceeds 20a0. By decreasing the pinning
strengthD to 0.01, we find a remarkably well-ordered lattic
with no topological defects for the system sizeNv56400, as
shown in Fig. 2~a!. This suggests that for sufficiently wea
pinning strength, large domains of ordered lattice, com
rable to sample size in typical experiments, can exist in 2
Figure 2~a! should be compared with Fig. 2~b! which shows
the meandering grain boundaries formed by the defects
D50.02. With increasingD, Rd decreases from'20a0 for
D50.02 to'3 –5a0 for D50.075. This is shown in Fig. 3
For strong pinning, the dislocations tend to cluster in so
regions implying that individual pinning centers locally te
the vortex lattice. With increasingD, the field range over

c-
6-3
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MAHESH CHANDRAN, R. T. SCALETTAR, AND G. T. ZIMÁNYI PHYSICAL REVIEW B 69, 024526 ~2004!
which the DR exists is reduced and in the strong pinn
limit, the system is amorphous for all values ofb.

In recent experiments, the changes in the real-space
figuration of vortices were studied in weak pinning NbS2
samples across the order-disorder transition by the B
decoration technique.25,26 The order-disorder transition wa
previously identified in transport measurements and h
been speculated to underly the peak effect in the critical c
rent density.27 The decoration images show that the vortic
form large ordered domains. The domains are separate
domain walls, which are defined by chains of dislocatio
This domain formation is present throughout theB-T plane
~below the melting line!, hence the authors summarized th
findings as the ‘‘absence of amorphous vortex matte
Fasanoet al. found that'85–90 % of the defects are in th
grain boundaries, whereas the remaining defects are iso
dislocations. All of these findings are consistent with o
numerical findings and estimates in the intermediate fi
range forD50.02.

2. Domain size distribution

A useful quantity to characterize the DR is the distributi
of the domain sizeN(sd), where the area of the domainsd is
in units of a0

2. Unlike in lattice models, extractingN(sd) in
models with continuous symmetry is not straightforwa
The lattice vectors can change continuously from domain
neighboring domainwithoutnucleating defects, which make
it difficult to define the domain wall. In many cases, t
domain walls, which are formed by the grain boundaries
not closed. Analysis of the real-space configuration sugg
that the domain walls are generally composed of two ty
of grain boundaries, depending on the misorientation an
ud between the neighboring domains. For the small-an
grain boundaries,ud;10° –16°, and the dislocations ar
separated by 3 –5a0. In large-angle grain boundaries, th
dislocations form closely packed stringlike structures, a
ud.20°. Typical domains and domain walls formed by t
grain boundaries are shown in Fig. 4.

To extract N(sd), we used the following procedure t
define domain walls in regions where the dislocations
apart. The misorientation angleud is obtained between suc
cessive vortices along one of the lattice vectors connec
neighboring domains. Ifud is between 12° and 18°, then th
vortex is considered as part of the domain wall. With th

FIG. 2. ~Color online! The real-space configuration of vortice
in a region of the simulation box forD50.01~a!, and 0.02~b!. The
Nv56400. In~b!, only the defects are shown.
02452
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method, the domain boundary in many cases could be de
mined with reasonable accuracy. This procedure is inten
to be instructive rather than decisive, as it contains so
arbitrariness. For example, in some regions the domain w
are wider thana0 and then the misorientation angle is sp
across the domain wall. Also, this method does not count
really small-angle domain walls, those withu,12°.

The area of the enclosed domains is used in creating
N(sd) histogram. Figure 5 shows the histogram plot
N(sd) for various values of the magnetic fieldb. The total
number of vorticesNv54096 andD50.02. At small and
large fields, the histogram can be adequately character
by a single parameter, e.g., its half width. The distribution
relatively narrow with few large domains. For the intermed
ate fields, theN(sd) exhibits a broad distribution with sub
stantial weight toward the tail region. This suggests t

FIG. 3. ~Color online! The vortex configuration in a region o
the simulation box forb50.6 and forD50.03 ~a!, 0.04 ~b!, 0.05
~c!, and 0.075~d!. The number of vorticesNv54096.

FIG. 4. ~Color online! The domain walls in the real-space co
figuration.~a! and~b! shows small angle grain boundaries, where
large angle grain boundaries can be seen in~c! and ~d!. The mag-
netic fieldb50.50 for ~a! and ~d!, and 0.65 for~b! and ~c!.
6-4
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DOMAIN REGIME IN TWO-DIMENSIONAL DISORDERED . . . PHYSICAL REVIEW B69, 024526 ~2004!
more than one parameter is required to characterize t
distributions, especially the excess weight in the tail regi

3. Roughness exponent

The interaction of the vortex lattice with the quench
impurities leads to displacement of the vortices from th
perfect lattice position. An important quantity which chara
terize the change in the position of the vortices is the rela
displacement correlation, defined as

W~r !5@u~r !2u~0!#2, ~2!

where the overbar represents the average over quenche
purities. Theu(r ) is the displacement of the vortex relativ
to its position in the perfect lattice. The positional orde
parameter correlationsCG(r ) can be expressed in terms
W(r ) asCG(r );e2G2W(r )/2, whereG is one of the recipro-
cal lattice vectors.3 For the crystalline state,W(r )50 and
CG(r )51. The effect of the quenched impurities is to i
creaseW(r ) and hence reduce the positional order-param
correlations of the lattice. The structure factor atG, mea-
sured in the neutron-scattering experiments, is related to
Fourier transform ofCG(r ).

The roughness of an elastic medium is parametrized
the exponentz, which is defined asW(r );r 2z. In the flat
phase of the mediumz,0, and in the rough phasez.0 @the
z50 gives logarithmic roughening withW(r ); ln r]. For a
2D vortex system, there are three length scales which em
in various theories depending upon the displacementu(r ).

~1! r ,Rc : In the collective pinning theory6 Rc represents
the size of the region in which the vortex lattice is coheren
pinned by the impurities. More precisely,Rc is the length
scale at which the displacementu(r 5Rc);j. Rc is obtained
by minimizing the total energy~elastic energy1 pinning
energy! and is given by

FIG. 5. The histogram plot of the domain size distributi
N(sd), wheresd is in the units ofa0

2. The values ofb are~a! 0.3,~b!
0.5, ~c! 0.7, and~d! 0.8. TheNv54096 andD50.02.
02452
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Rc'
C66j

f np
1/2

. ~3!

The C66 is the shear modulus of the vortex lattice and t
average pinning forcef ;D/r p , wherer p is the range of the
pinning potential as defined in Sec. II. For theK0(r /l) po-
tential, the field dependence of the shear modulus have b
derived36 and is given asC66'f0B/(4pl)2(12b)2. In di-
mensionless units, theRc becomes

Rc

a0
'

1

~2p!3/2

k2

f np
1/2

b3/2~12b!2. ~4!

The Rc increases withb and attains a maximum before de
creasing asb→1.

The r ,Rc regime is often referred as the random for
~RF! regime. The roughness exponent in this regime is giv
by z542D/2 for a D-dimensional system. Thus,zRF

2D51
andzRF

3D50.5 for 2D and 3D systems, respectively.
~2! Rc,r ,Ra : BeyondRc , the displacementu(r ) con-

tinues to grow but with smaller exponent.Ra defines the
length scale at which the positional correlation begins to
cay, i.e., the displacementu(r 5Ra);a0. BetweenRc and
Ra , the system is in the random manifold~RM! regime. In
this regime, the roughness exponent have been obtained
ing a Flory type argument37,38 which giveszRM

2D 5 1
3 . A more

refined scaling argument39 gives zRM
2D 50.4. For weak pin-

ning, the length scalesRa and Rc are related byRa
;Rc(a0 /j)1/zRM.

~3! Ra,r ,jD : Beyond Ra , W(r ) grows as3,4 W(r )
; ln2(r) as derived through a variational approach and c
firmed by replica symmetric RG~Ref. 41!, assuming the lack
of dislocations at these scales.40 This growth form holds up
to the length scalejD , at which unbound dislocations ap
pear. For weak pinning,jD@Ra ,18

jD;RaexpFcAS 1

8
2s0D lnS Ra

a0
D G , ~5!

wherec is a temperature-dependent numerical constant
s0 is the impurity strength. ForRa@a0 and low tempera-
tures,jD can become exceedingly large and the system
pears similar to the BG phase in 3D.

~4! jD,r : BeyondjD , unbound dislocations lead to ex
ponential decay of the positional correlation and the sys
is disordered.

We have obtained the length scale and the roughness
ponent of the vortex lattice in the DR. The relative displac
ment correlationW(r ) was calculated using the following
procedure. First, a crystalline state with the lattice const
corresponding to the value ofb is constructed using one o
the vortex coordinatesr0 in the real lattice as the origin. Th
mean-square displacement between the perfect lattice an
underlying real lattice is then minimized by varying the o
entation of the perfect lattice relative to the real lattice. T
u(r ) is then computed for each of the vortices. This proc
dure is repeated for differentr0’s, and theW(r ) is computed
by averaging over allr0’s.
6-5
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Figure 6 shows the plot ofW(r )/a0
2 for b50.6 andD

50.01 for Nv56400. W(r ) for Nv54096 is shown in the
inset. For these parameters, even the largestNv56400 sys-
tem is free of dislocations@see Fig. 2~a!#. Due to periodic
boundary condition, the length scale probed in the simula
is half the system size, which forNv56400 and 4096 are
40a0 and 32a0, respectively.W(r ) shows an initial power-
law increase with an exponentz'0.65–0.72. The system
exhibits a crossover aroundr * '4 –5a0 into a regime where
the increase ofW(r ) is slower. Between 5a0&r &15a0 the
exponent isz'0.40–0.42. Forr *16a0, the growth ofW(r )
slows down considerably.

It is plausible thatr * 5Rc , where the system crosses ov
from the RF regime to the RM regime. This can be verifi
by calculatingRc using Eq.~4!, which gives a value'4a0
for b50.6, in reasonable agreement with the value ofr * . In
our systemj50.1l0, and atb50.6 the lattice constanta0
50.347l0. From Fig. 6,u(Rc)'0.2a0'0.07l0, thus con-
firming thatu(r 5Rc)'j.

Beyond Rc , the length scaleRa of the RM regime is
defined asu(r 5Ra);a0. This translates toW(r )'0.12a0

2

for b50.6. From Fig. 6, we find thatW(r ) flattens at'0.1
at r;13a0 for Nv56400, which suggests thatRa'13a0 ~for
Nv54096, Ra'18a0). Beyond Ra , the slow growth of
W(r ) indicates the appearance of the asymptotic regi
Within the qBG theory,3 W(r ) is expected to grow as ln2(r)

FIG. 6. TheW(r )/a0
2 as a function ofr /a0 for D50.01 forNv

56400. The inset shows the same forNv54096. TheW(r );r 2z

where the exponentz is shown for the RF regime and the RM
regime.
02452
n
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in the asymptotic regime. This behavior unfortunately cou
not be verified due to insufficient range of data points.
sum, we identify ther;1a0–5a0 as the RF regime, ther
;5a0–15a0 as the RM regime, andr .15a0 as the
asymptotic regime.

The value ofz'0.65–0.72 obtained from the simulatio
in the RF regime is smaller than the theoretical prediction
zRF

2D51. We speculate that the interactionK0(r /l) between
the vortices in 2D increases the stiffening of the vortex l
tice at short distances which leads to weaker roughening
the RM regime, the exponentz'0.40–0.42 is in good agree
ment with the value of 0.4 expected from the scali
argument.39 UsingzRM

2D 50.4, the value ofRa'15a0 is much

smaller than the valueRa;Rc(a0 /j)1/zRM
2D

. The small size of
the RM regime is possibly related to the large magnetic fi
b50.6 used in obtainingW(r ). For this field,a0 is compa-
rable to j, and Rc is large compared to smaller magnet
fields. The RM regime is expected to disappear fora05j,
and have been shown in the case of 3D system.42

An interesting outcome of the above analysis ofW(r ) is
that the average domain sizeRd@Rc , and hence, the collec
tive pinning theory cannot account for the appearance of
mains in the intermediate fields. The asymptotic regime
W(r ) suggests that the qBG theory is qualitatively corre
Within the qBG theory, the distribution of dislocations b
yond the length scalejD is expected to be homogeneou
unlike the grain-boundary formation observed in our simu
tion. One possible way to account for the grain-bound
formation is to consider the long-range interaction betwe
the dislocations. Since the interaction between the dislo
tions is anisotropic, for some values of dislocation dens
the grain boundaries may lead to a lower-energy state. Th
also supported from a recent work on dipole systems.43 At
low densities, the dipoles exhibit a gaseous phase, and
distribution is roughly homogeneous. At higher densities
phase is characterized by dipoles forming chains or strin
Since the dislocations of the vortex lattice are in fact dipo
of disclinations, these results are quite analogous to our id
tification of a domain regime in the vortex matter.

4. Defect density

The three field regimes discussed in the context of
real-space configuration can also be inferred from the beh
ior of the defect densitynd(b). Figure 7~a! showsnd(b) for
D50.02 andNv54096. The behavior for smaller syste
re
FIG. 7. ~a! The topological defect density
nd(b) for D50.02 andNv54096. Also shown is
the nd(b) for the smaller system size.~b! The
f d(D) for b50.6. Inset: The plot off d as a func-
tion of Nv

21 for D50.02 andb50.6. There is a
critical system size below which dislocations a
not present in the system.
6-6
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sizes (Nv5800–1200) is also shown on the same plot. T
nd(b) increases linearly in the low-field amorphous regim
Above a crossover fieldbl'0.1, nd(b) flattens and become
weakly field dependent in the DR. Forb*0.6, nd(b) in-
creases rapidly, and abovebh'0.8 the system crosses over
the high-field amorphous regime. It is possible to defin
length scaleLd;nd

21/2, as the nominal average defect sep
ration. Forb50.6 ~domain regime! Ld'3a0, which is much
smaller than evenRc and does not correspond to any featu
in the real-space configuration, and reflects the highly in
mogeneous nature of the defect distribution in the dom
regime. On the other hand, in the high-field amorphous
gimeLd;a0, which is also the distance between the defe
thus reflecting homogeneity of the distribution of defects

The nd(b) in Fig. 7~a! shows strong similarity with the
experimental observation in 2D system of magne
bubbles.44 In Ref. 44, the intermediate regime was inte
preted as the hexatic phase and the high-field amorph
regime as the isotropic liquid phase.45 Later simulation46 also
suggested aT50 dislocation unbinding transition driven b
disorder. As discussed above, the presence of domain w
~grain boundaries! in our system suppresses the long-ran
orientational order. This rules out the possibility of a tran
tion between the hexatic phase and the isotropic liquid ph
as the underlying reason for the rapid increase innd(b).
However, a rapid crossover, similar to that predicted betw
the qBG at low temperatures and vortex liquid at hi
temperatures,19 is still possible between the DR and the hig
field amorphous regime, especially at weaker pinning wh
the domain sizeRd is large.47

For smaller system size (Nv5800–1200), a topologically
ordered phase appears in the intermediate field rang
which nd50 @see Fig. 7~a!#. This is a finite-size effect, which
reflects the sensitivity of the DR to the system sizeL. For
L,jD , the DR can appear as a topologically ordered s
free of dislocations. This implies that for a given system si

FIG. 8. ~Color online! The domains in a region of the simulatio
box for ~a! b50.7 and~b! 0.8. TheNv54096 andD50.02.
02452
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there exists a criticalDc below which dislocations are no
favored. This is observed in the simulation, as shown in F
7~b! where the defect fractionf d(D) ~number of defects pe
vortex! is plotted for b50.6. For the smaller systemNv
5900, f d goes to zero atDc50.03, and the system exhibit
an ordered phase forD,Dc . IncreasingNv to 4096 reduces
Dc to 0.01, and in the asymptotic limitNv→` ~hence,L
→`), we expectDc→0. In the DR, f d does not increase
continuously with increasingL(}Nv

1/2) but shows a sharp
jump from the dislocation-free state to the domain state a
characteristic system size as shown in the inset of Fig. 7~b!.

5. Crossover from DR to high-field amorphous regime

As discussed above, thend(b) shows a rapid crossove
from the DR to the high-field amorphous regime. To und
stand the mechanism for this sharp crossover, we identi
the domains and the domain walls betweenb50.5 andb
50.8 for D50.02. For the intermediate fieldsb'0.5–0.6,
the grain boundaries are generally smooth andnd(b) is
weakly field dependent. Forb*0.6, the rapid increase in
nd(b) occurswithin the domain walls. Consequently, the d
main wall length increases, which is accommodated thro
enhanced roughening of the domain walls. This is evid
from Fig. 8~b!. The increase in the roughening also facilitat
the unbinding of the dislocations into free disclinations a
subsequently drives the crossover into the VG state. In s
a scenario, we conjecture that domain walls undergo diso
driven roughening transition at the crossover between
DR and the high-field VG. It would be of interest to obta
the domain-wall roughening exponent across the crosso
regime.

B. Finite-temperature simulation

In this section, we compare the current annealing met
with the conventional simulated annealing method, as i
well known that different sample preparation techniques
result in the vortex system not reaching its equilibriu
configuration.33,48 In the latter method, the temperatureT is
reduced from the high-temperature liquid phase slowly so
to reach thermal equilibrium at each value ofT. This method
is commonly used to search for the ground state of dis
dered systems.

For the thermal annealing, the system was equilibrated
53104–13105 time steps before averaging over a simil
time scale to calculate the defect fractionf d(T). The number
of vorticesNv5900 andD50.03. For this system size, th
r-
FIG. 9. ~Color online! ~a! The defect fraction
f d(T) for various magnetic fieldsb with D
50.03. The temperatureT is decreased slowly
from the high-T liquid phase.~b! The f d(b) at
T50 obtained from thermal annealing and cu
rent annealing.
6-7
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CA method gives a topologically ordered phase forb be-
tween 0.6 and 0.75. Figure 9~a! shows f d(T) for various
values of the magnetic field. As the temperature is lower
for b50.2 f d(T) decreases monotonically to a finite valu
with d fd /dT slowly varying. There is no evidence of a tra
sition as a function of the temperature. With increasingb, the
slow freezing is replaced by a sharp decrease inf d(T) at a
particular temperatureTm , similar to the equilibrium melting
transition. Forb50.65, f d(T) at Tm decreases by'76% of
the value aboveTm . Forb.0.8, the meltinglike transition is
again replaced by slow freezing of the high-temperature
uid phase.

In Fig. 9~b!, f d(b) at T50 obtained by TA is compared
with that obtained by CA. At intermediate fields, the the
mally annealed samples exhibit the presence of dislocat
already at these smaller system sizes. As described ab
the current annealing method requires larger system size
correctly display this same phenomenon. Otherwise, the
curves track each other very closely over most of the fi
range, including the low-field slow decay off d(b) and the
rapid rise at high fields. For the intermediate fields, theT
50 configuration obtained from TA also shows grai
boundary formation, similar to that observed from the C
method.

IV. CONCLUSION

We have presented a detailed numerical analysis of
real-space configuration of 2D vortex system in the prese
of quenched impurities. For weak pinning, the disorde
state in the intermediate field range is inhomogeneous.
majority of the dislocations in this state are confined to gr
boundaries, which form domain walls between regions
topologically ordered vortex lattice. There are no free dis
nations in the system. This state is referred as the dom
state and the intermediate field range as the domain reg

The domain size distributionN(sd) was calculated in the
domain regime.N(sd) shows a broad distribution with
large weight in the tail region at intermediate fields. The
fore, more than one length scale is required to properly c
acterize the domain size distribution in the domain regim
With increasingb, the distribution becomes narrow and th

*Corresponding author. Present address: Jawaharlal Nehru C
for Advanced Scientific Research, Jakkur, Bangalore 5600
India. Electronic address: mchandran@physics.iisc.ernet.in
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peak shifts toward the origin. For weak pinning, the size
the domains can become exceedingly large.

The domain regime is bounded by an amorphous reg
at low fields and high fields. The defects in the amorpho
regime are separated by the smallest length scale;a0 and
show homogeneous distribution unlike the grain-bound
formation in the domain regime. The domain regime sho
rapid crossover into the high-field amorphous regime. Fr
the changes in the configuration, we identified the rough
ing of the domain walls as the plausible mechanism driv
the rapid crossover.

The relative displacement correlationW(r ) in the domain
state was also calculated for weak pinning. Three disti
regimes were observed: a random force regime, a rand
manifold regime, and the asymptotic regime. Crossover fr
random force regime to the random manifold regime is fou
to occur atRc;4 –5a0. The value ofRc agrees with that
obtained from the collective pinning theory. The roughne
exponentz in the random manifold regime is found t
'0.40, within the range of various theoretical predictions

The observation of random manifold and asymptotic
gimeswithin the domains for weak pinning suggests that t
vortex lattice is correctly described by the qBG idea, thou
the exact form of theW(r ) could not be ascertained. A
length scales greater than the domain size, the appearan
the domain wall formed by dislocations is not captured
the quasi-Bragg glass theory. Therefore, it remains to be s
whether besides the domain regime the 2D vortex ma
supports a quasi-Bragg glass where the dislocations are
mogeneously distributed.
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