I. INTRODUCTION

A number of rare-earth metals undergo pressure induced first-order phase transitions with unusually large volume changes of 9–15% (for reviews see Refs. 1–3). Of these transitions the isostructural γ-α transition in Ce has received the most attention. It was discovered first, has the largest volume change (15% at room temperature), and may also be accessed entirely at ambient pressure by changing the temperature, thus, for example, allowing thorough spectroscopic investigation of both phases. The results of such photoemission and bremsstrahlung studies show a dramatic transfer of spectral weight to the Fermi energy and the most attention. It was discovered first, has the largest volume change of 4 f electrons participating in the crystal binding, in contrast to the 15% of 4f electrons does not change significantly and is close to the α-Ce phase.

Similarly, the optical conductivity is higher in the α phase where the frequency dependent scattering rate is characteristic for a Fermi-liquid behavior with an effective mass of about 20m_e. Also the magnetic susceptibility and its temperature dependence change from a Curie-Weiss-like behavior in the γ phase to a Pauli paramagnetic behavior in the α phase. Despite these dramatic differences, the number of 4f electrons does not change significantly across the transition. In the α-Ce phases become indistinguishable. In general, it is believed that the transition is driven by changes in the 4f electron correlations, though some alternative theories have been proposed. Two recent examples of the latter assume some kind of symmetry breaking in the α phase: Eliashberg and Capellmann argue that α-Ce has a symmetry broken distorted structure mainly based on the observation that the α phase shows large changes of the compressibility; Nikolaev and Michel propose (hidden) quadrupolar ordering. In these theories one must have a tricritical point at T~600 K with a second-order phase transition line extending to higher temperature, which disagrees with the common interpretation of the experiment.

The promotional model introduced in 1947 was the first theory of electronic origin to describe the γ-α transition, assuming a change in electronic configuration from 4f^1(spd)^3 to 4f^0(spd)^4. Theories of this general type followed until Johansson’s 1974 analysis of cohesive energies provided strong evidence that the promotional model could not be right, as was also corroborated by experimental evidence that the number of 4f electrons did not change significantly across the transition. These facts led Johansson to propose a Mott transition (MT) scenario. Similar to the MT of the Hubbard model, the 4f electrons are considered to be localized in the γ phase and to be itinerant in the α phase, with this reduction in the degree of 4f-electron correlation being caused by the decrease in the ratio of Coulomb interaction to kinetic energy under pressure. The phase transition is then understood to arise from a 4f contribution to the cohesive energy in the α phase where the itinerant 4f electrons participate in the crystal binding, in contrast to the γ phase where the localized 4f electrons do not. In a subsequent analysis based on these ideas, Johansson et al. employed a standard local-density approximation (LDA) calu-
lulation for the $spdf$ electrons in the α phase, while treating the $4f$ electrons as localized $4f^1$ moments decoupled from LDA spd bands in the γ phase. Evidence for the MT scenario to be correct is taken from the considerable success of LDA calculations and their generalized gradient improvements for the structural and volume dependence of the total energy of α-Ce-like phases. Additional support appears to come from orbitally polarized18–20 and self-interaction corrected20–22 LDA modifications which obtain transitions in Ce and Pr at about the right pressures. Also LDA $+ U$ calculations have been reported for one or both Ce phases.23,24

In the years following Johansson’s MT proposal, photoemission experiments (see discussion and references in Ref. 5) confirmed his estimate of the $4f$ binding energy; however, these exhibited other features in the $4f$ spectra which appeared inconsistent with his MT picture. This led in 1982 to the Kondo volume collapse (KVC) scenario of Allen and Martin25 and Lavagna et al.26 which is based on the Anderson impurity model, and to later improvements by Allen and Liu.27 Both MT and KVC pictures agree that, at the experimental temperatures, the larger volume γ phase is strongly correlated (localized), has Hubbard split $4f$ spectra, and exhibits a Hund’s rule $4f^1$ moment as reflected in the observed Curie-Weiss magnetic susceptibility. But, while the MT scenario then envisages a rather abrupt transition on compression to a weakly correlated (itinerant) α phase, in which the Hubbard split bands have coalesced together near the Fermi level and the $4f^1$ moments are lost, the KVC picture assumes continued strong correlation in the α phase with Kondo screening by the valence electrons of the persistent $4f$ moments. The signature of this Kondo screening is a peak in the $4f$ spectra at the Fermi level, the Abrikosov-Suhl or Kondo resonance, which lies between the remaining Hubbard-split spectral weight characteristic of the local moments.3 The KVC model predicts in agreement with electron spectroscopy that both Ce phases show all three peaks in the $4f$ spectra, the Abrikosov-Suhl resonance and the two Hubbard side bands. The difference is that the former resonance has small weight in the γ phase and dramatically larger weight in the α phase, coming at the expense of reduced but still extant Hubbard side bands in the latter case. It is this rapid volume dependence of the Abrikosov-Suhl resonance and equivalently of the Kondo binding energy that is the driving mechanism for the phase transition in the KVC model, which is then intimately connected to the energy scale of the Kondo screening.25–27 A genuine prediction of the KVC model is then naturally connected to the energy scale of the Kondo entropy, which is the existence of an unusual second critical point at low (negative) pressure, which was subsequently seen experimentally by using alloying to push it to observable positive pressures.28 Since the original KVC model incorporates only two bands, there have been subsequent efforts to introduce more orbital realism from LDA.27,29,30 The work of Allen and Liu, for example, is quite realistic within the confines of the impurity model, including the full $4f$ degeneracy, spin orbit and intra-atomic exchange, as well as LDA-based hybridization matrix elements renormalized to spectroscopic data.27

Many of the Kondo-like features just discussed in the context of the impurity Anderson model have been more recently found also in correlated solutions of the Hubbard model itself, which in infinite dimensions maps onto a self-consistent solution of an Anderson model.31 Therefore, if the MT and KVC scenarios are based on correlated solutions12,33 of the Hubbard and impurity (or periodic) Anderson models as respective paradigms, then these scenarios are not so different, as has been recently argued.34 Specifically, the behavior of the local moment at the MT of the Hubbard model is not so abrupt, nor is the appearance of a three peak structure in the density of states unique to the impurity or periodic Anderson models. Whether for the Hubbard model or real materials, it is really the use of static mean-field approximations (including LDA and its modifications) which introduces the abrupt moment loss and single-peaked spectra in the itinerant phase of the MT transition as envisioned by Johansson13 and the LDA community.18–24

A new approach to describe Ce including both orbital realism and electronic correlation effects is now available with the recent merger35–37 of LDA and dynamical mean-field theory (DMFT).38,39 This approach has been employed by Zöllf et al.40 who used the noncrossing approximation (NCA) to solve the DMFT equations in order to calculate the spectra, Kondo temperatures, and susceptibilities for α- and γ-Ce. Independently, we treated the DMFT equations with the more rigorous quantum Monte Carlo (QMC) simulations and reported, as first results of the present effort, evidence for a Ce volume collapse in the total LDA+DMFT energy which coincides with dramatic changes in the $4f$ spectrum.42 A similar transition was also described earlier in LDA+DMFT calculations for Pu.43 In all three cases, the f spectra showed Abrikosov-Suhl resonances lying in between residual Hubbard splitting for the smaller-volume, less-correlated α phases, in contrast to the LDA results mentioned above which only obtain the Fermi-level structure. Related behavior is also observed for the Mott transition in V_2O_3, which was studied recently by LDA+DMFT.44

In the present work we extend Ref. 42 to lower temperatures, complement it with Hubbard-I calculations,36,45 and calculate the volume dependence of additional physical quantities including the entropy, specific heat, total spectrum, orbital occupation, and the magnetic moment. In Sec. II, the LDA+DMFT technique is briefly described along with the Hubbard-I approximation and a faster implementation of the QMC treatment which is subsequently validated against established approaches. In Sec. III, thermodynamic results, i.e., the energy, specific heat, entropy, and free energy, are presented over a wide range of volume and temperature and the signatures for the α-γ transition are discussed. We present the volume and temperature dependence of the $4f$ and the valence $spdf$ spectrum and compare to experiment in Sec. IV. The $4f$ occupation, local magnetic moment, and related quantities are given in Sec. V. Finally, the results of this paper are summarized and discussed in Sec. VI.

II. THEORETICAL METHODS

The results in this paper have been obtained by the LDA+DMFT method, that is, by the merger of the LDA and dynamical mean-field theory (DMFT) which was recently

introduced by Anisimov et al.35 and Lichtenstein and Katsnelson16 (for an introduction see Ref. 37). The starting point of this method is a conventional LDA band-structure calculation. Since electronic correlations are only treated at a mean-field level within LDA, the most important term for electronic correlations, i.e., the local Coulomb interaction, is added explicitly. This defines a multiband many-body problem that is solved by DMFT. To solve the DMFT equations, we employ two different implementations of the QMC technique as well as the Hubbard-I (Refs. 36 and 45) (H-I) approximation. This section describes the relevant computational details of our calculations.

A. LDA+DMFT approach

Scalar-relativistic, linear muffin-tin orbital LDA calculations46,47 were performed for face centered cubic (fcc) Ce over a grid of volumes as described elsewhere.3 The associated (6s,6p,5d,4f) one-electron Hamiltonians define 16×16 matrices H_{LDA}^0, after shifting the 4f site energies to avoid double counting the Coulomb interaction U_f between 4f electrons. The latter is explicitly taken into account in the full second-quantized Hamiltonian for the electrons,

$$H = \sum_{k,m,l,m',\sigma} [H_{\text{LDA}}^0(k)]_{lm,l'm',\sigma} c_{klm\sigma}^\dagger c_{kl'm'\sigma} + \frac{1}{2} U_f \sum_{k,m,m',\sigma} \hat{n}_{kfm\sigma} \hat{n}_{km'\sigma}'. \quad (1)$$

Here, k are Brillouin zone vectors, i are lattice sites, lm denote the angular momentum, σ is the spin quantum number, $\hat{n}_{kfm\sigma}=c_{kfm\sigma}^\dagger c_{kfm\sigma}$, and the prime signifies $m\sigma \neq m'\sigma'$. The many-body Hamiltonian, Eq. (1), has no free parameters since we employed constrained-occupation LDA calculations to determine U_f and the 4f site energy shift for all volumes considered (see Fig. 5 of Ref. 3 for the values). We did not take into account the spin-orbit interaction which has a rather small impact on LDA results for Ce, and also neglected the intra-atomic exchange interaction which has only an effect if there are more than one 4f electrons on a Ce atom.

The DMFT maps the lattice problem, Eq. (1), onto the self-consistent solution of the Dyson equation,

$$G_k(i\omega)=[i\omega I+\mu I-H_{\text{LDA}}^0(k)-\Sigma(i\omega)I_f]^{-1}, \quad (2)$$

and a seven-orbital (auxiliary) impurity problem defined by the bath Green function,

$$G(i\omega)^{-1} = \left(\frac{1}{TN} \sum_k \text{Tr}(G_k(i\omega)I_f^j)\right)^{-1} + \Sigma(i\omega). \quad (3)$$

Here I is the unit matrix, $I_f=[\delta_{ij}\delta_{\sigma\sigma'}\delta_{mm'}]$ projects onto the seven f orbitals, μ is the chemical potential, Tr denotes the trace over the orbital matrix, and N is the number of k points ($N=2048$ for $T\leq0.4$ eV and $N=256$ for $T>0.4$ eV). Within the LDA, there is a minor crystal-field splitting of the seven 4f orbitals. However, in Eq. (3) we average over the seven 4f orbitals, i.e., we treat them as degenerate in the auxiliary impurity problem. Consequently, the DMFT self-energy is diagonal $\Sigma(i\omega)I_f$, at least in the paramagnetic phase studied. The impurity problem is solved with one of the methods described in the following two sections and generates a self-energy $\Sigma(i\omega)$. This self-energy gives a new Green function in Eq. (2) and thus a new impurity problem and so on, iterating to self-consistency (for more details see Refs. 39 and 37). In this self-consistency cycle, the chemical potential μ of Eq. (2) is adjusted so that the total number of electrons described by Eq. (1) is $n_f+n_v=4$ per Ce site. Here, the number of 4f electrons n_f, and similarly the number n_v of valence (i.e., spd) electrons, may be obtained from the lattice Green function

$$n_f=\frac{T}{N} \sum_{n\sigma} \text{Tr}[G_k(i\omega_n)I_f^j]e^{i\omega_n0^+}. \quad (4)$$

where T is the temperature and $\omega_n=(2n+1)\pi T$ are the Matsubara frequencies. To obtain the physically relevant Green function $G(\omega)$, we employ the maximum entropy method48 for the analytic continuation to real frequencies ω.

In principle, the LDA and DMFT parts of the calculation should be mutually self-consistent, with DMFT changes in orbital occupations (especially n_f) feeding back into a new $H_{\text{LDA}}^0(k)$ and U_f, as argued by Savrasov and co-workers.43 Certainly the constrained occupation calculations used to fix U_f and the 4f site energy in $H_{\text{LDA}}^0(k)$ should not be impacted, as they are intended to be valid over the range $0<n_f<2$. These calculations provide what are, in effect, the screened Coulomb energies for 0, 1, and 2 f electrons per site, which covers this range according to what fraction of the sites are at one or another of the various occupations.3 However, differences between the DMFT n_f and the LDA n_f could, if the former were fed back into the LDA, change the position of 4f level slightly, and with that the extension of the 4f wave function, and thus the f-valence hybridization. It is simply not known at this point if such effects are important, although we note that DMFT(QMC) and LDA-like (see Sec. II D) solutions of Eq. (1) generally yield values of n_f within 10% of one another. The additional cost on top of the already very expensive LDA+DMFT(QMC) method also makes such additional self-consistency impractical in the present case.

B. Hubbard-I approximation

In the large-volume limit where intersite hybridization vanishes, the auxiliary impurity problem is simply the isolated atom, i.e., $G(i\omega)=1/(i\omega+\mu-\varepsilon_f)$, where ε_f is the 4f site energy. In this limit the exact self-energy is known and may, at finite volumes, be used as the H-I approximation:36,45

$$\Sigma^{\text{H-I}}(i\omega)=i\omega+\mu-[G^{\text{H-I}}(i\omega)]^{-1}. \quad (5)$$

$$G^{\text{H-I}}(i\omega)=\sum_{j=1}^{14} \frac{w_j(\mu_{\text{at}}, T)}{i\omega+\mu_{\text{at}}-(j-1)U_f}. \quad (6)$$
\[n_f^{\text{cl}} = 14T \sum_n G_n^{\text{cl}}(i\omega_n) e^{i\omega_n 0^+}, \]

(7)

where \(\varepsilon_f \) has been absorbed into \(\mu_{\text{cl}} \), which is set at each iteration in such a way that \(n_f^{\text{cl}} \) of Eq. (7) equals the current \(n_f \) of Eq. (4). The positive weights \(w_j \) for transitions between \(j-1 \) and \(j \) electrons are given by

\[w_j = \left[jv_j + (15-j)v_{j-1} \right] \left/ \left(14 \sum_{j=0}^{14} v_j \right) \right. \],

(8)

where \(v_j \) are Boltzmann weights for having \(j \) electrons on the atom,

\[v_j = \frac{14!}{j!(14-j)!} \exp \left[-\frac{1}{2j} \left(i(j-1)U_j - j\mu_{\text{cl}} \right)/T \right]. \]

(9)

Our DMFT (H-I) procedure is in fact also correct at all volumes in the high-temperature limit. Noting that the \(w_j \)’s sum to unity, one can see that

\[\Sigma^{\text{cl}}(\infty) = \frac{13}{14} \left[\sum_{j=0}^{14} v_j \right] \left/ \sum_{j=0}^{14} v_j = \frac{13}{14} n_f \Sigma^{\text{cl}} \right. \]

(10)

since we always choose \(\mu_{\text{cl}} \) so that \(n_f^{\text{cl}} = n_f \). This is the paramagnetic Hartree-Fock value, which is also the correct high-temperature limit since \(\omega_n \gg T \), and only the high-frequency tail of the self-energy is of importance.

C. QMC simulations

Our main approach to solve the DMFT impurity problem is the numerical QMC technique. We use two implementation that differ mainly by the Fourier transformation between the Matsubara frequency representation employed in the Dyson equation, Eq. (2), and the imaginary time representation employed for the QMC simulation of the impurity problem, Eq. (3). Within QMC, the imaginary time interval \([0, \beta] \) (\(\beta = 1/1T \)) is discretized into \(\Lambda \) Trotter slices of size \(\Delta \tau = \beta/\Lambda \). Since there are 91 Ising fields per time slice, the number of time slices that are computationally manageable in the QMC is seriously restricted. Thus, if one employs a discrete Fourier transformation between \(G(i\omega_n) \) at a finite number of \(\Lambda \) Matsubara frequencies and \(\Sigma(\tau_i), \tau_i = 1\Delta \tau, \ldots, \Lambda \Delta \tau \), the resulting Green function oscillates considerably around the correct \(G(\tau) \). To overcome this shortcoming, Umkne and co-workers\(^9\) suggested using a smoothing procedure that replaces \(G(i\omega_n) \rightarrow \tilde{G}(i\omega_n) \), after calculating the auxiliary \(\tilde{G}(i\omega_n) \) via Eq. (3), where

\[\tilde{G}(i\omega_n) = \frac{\Delta \tau}{1 - \exp[-\Delta \tau \tilde{G}(i\omega_n)]}. \]

(11)

It is \(\tilde{G}(i\omega_n) \) that is Fourier transformed to imaginary time \(\tilde{G}(\tau) \), and once the QMC simulations of the Anderson impurity problem have yielded the output \(G(\tau) \), the process is reversed: The Fourier transform of \(G(\tau) \), \(\tilde{G}(i\omega_n) \) yields \(G(i\omega_n) \) from the inverse of Eq. (11). The new self-energy is then \(\tilde{\Sigma}(i\omega_n) = \tilde{G}(i\omega_n)^{-1} - G(i\omega_n)^{-1} \).

This approach generates smooth Green functions \(G(\tau) \) and reproduces the correct \(\Delta \tau \rightarrow 0 \) limit. We use it in one implementation of the QMC algorithm, referred to as \(\text{QMC}_1 \) in the following. Other approaches employed in the literature are to fit splines to \(G(\tau) \) and, thus, to use more support points than \(\Lambda \) to do the Fourier transformation and to extend the Matsubara frequency sums by employing the iterated perturbation theory result at high frequencies.\(^{40}\) Most results of our paper were obtained by yet another QMC implementation \(\text{QMC}_2 \) that uses a different way to Fourier transform and which seems to be less sensitive to statistical noise. As this modification is new, it is described in some detail in Sec. II C 1 and validated in Sec. II C 2.

1. Modified QMC implementation

In the implementation \(\text{QMC}_2 \), we use a constrained fit

\[G(\tau) = \sum_i w_i f_i(\tau) \]

(12)

to the output QMC impurity Green function \(G(\tau) \), in order to accomplish the Fourier transform to \(G(i\omega_n) \) for \(n = -\frac{1}{2}N_o, \ldots, \frac{1}{2}N_o - 1 \) with \(N_o > \Lambda \). The basis functions \(f_i(\tau) = -e^{-i\gamma_i}(e^{-\beta \gamma_i + 1}) \) and have Fourier transforms \(f_i(i\omega) = 1/(i\omega - \epsilon_i) \). At real frequencies, Eq. (12) corresponds to a set of \(\delta \) functions with different spectral weights \(w_i \), and is capable in the limit of an infinite set of basis functions of reproducing any given spectrum. In contrast to a spline fit where every fit coefficient is determined by the local behavior in an imaginary time interval, in our approach every fit-coefficient is determined by the local behavior in frequency space.

The constraints to the fit Eq. (12) are \(w_i \geq 0 \), \(G(0^+) \) is precisely the QMC value, \(G(0^+) + G(\beta^-) = -1 \), and \((d/d\tau)G(0^+) + (d/d\tau)G(\beta^-) = g_2 \), where \(\beta^- = \beta - 0^+ \) and \(g_2 \) is the \((i\omega)^{-2} \) high-frequency moment of \(G(i\omega) \). For the last constraint, \(g_2 \) is obtained from the relation \(G(\gamma_i) = G(\gamma_i - \Sigma(i\omega)) \) which implies \(g_2 = g_2 + g_0 \), where these are the indicated moments of \(G(i\omega) \), \(G(i\omega) \), and \(\Sigma(i\omega) \), respectively. Here, \(\gamma_2 \) is known as \(G \) is input to the QMC, and we take \(\epsilon_0 = \Sigma(i\omega = \infty) = (13/14)n_f U_f \) with \(n_f = 14[1 + G(\tau = 0^+) \) for the present paramagnetic case.\(^{50}\)

Typically we use grids of \(\Lambda/4 \) equally spaced \(\epsilon_i \), and optimize the agreement with the QMC data as a function of the centroid and width of these grids, in each case systematically eliminating basis functions for a given grid which would otherwise yield negative \(w_i \). Because the QMC expense increases as \(\Lambda^3 \), we are forced to execute fewer Monte Carlo sweeps for the largest \(\Lambda \)’s, and the statistics become less good than for smaller \(\Lambda \)’s. However, the constraint \(w_i \geq 0 \) still seems to provide a sensible interpolation through the statistical noise, although this has the consequence that the number of surviving positive \(w_i \) increases more slowly than \(\Lambda \). Nonetheless, we see a systematic evolution as \(\Lambda \rightarrow \infty \) agree with large-volume and high-temperature limits (Hubbard-I) and the QMC\(^1\) (see Sec. II C 2). Note that while we find the fit Eq. (12) to be very useful for functional behavior along the
imaginary time and frequency axes, and for integral quantities such as n_f and the total energy, it is not useful in practice for directly obtaining real frequency behavior in the presence of typical QMC statistical uncertainties. The maximum entropy method is far superior here as it folds these uncertainties into calculation of the spectra.48

In order to accelerate the convergence of our DMFT(QMC\textsubscript{2}) method we carry out cheap iterations on the constant part of the self-energy in between each expensive QMC iteration. That is, we subtract a constant Hartree-Fock contribution50 from the QMC self-energy: $\Delta \Sigma (i\omega) = \Sigma_{\text{QMC}}(i\omega) - (13/14)n_f^{\text{QMC}}U_f$ where $n_f^{\text{QMC}} = 14[1 + G(\tau = 0^+)]$. Following every QMC cycle, then, one has $\Sigma(i\omega) = (13/14)n_f U_f + \Delta \Sigma(i\omega)$ in Eq. (2) which is iterated to self-consistency with n_f from Eq. (4), while keeping $\Delta \Sigma$ fixed. The resultant values of n_f and n_f^{QMC} agree within statistical uncertainties. These uncertainties can be significantly smaller for n_f than for n_f^{QMC} at the smallest volumes.

We find $G(\tau)$ to converge quickly as a function of QMC\textsubscript{2} iteration for all τ at small volume, and for τ close to 0 and β at large volume. For intermediate τ at large volume and low temperature, however, where $G(\tau)$ is generally quite small, convergence appears to result from the average of frequent small values of $G(\tau)$ with occasional large values as the Ising configurations are sampled, with the large-volume atomic limit approached by the latter becoming statistically unimportant.

In order to improve the statistics given by this behavior, we have chosen to include sweeps from all previous QMC iterations (excluding warm-up sweeps) along with the new sweeps in $G_i^{\text{new}}(\tau_i)$ in arriving at the QMC\textsubscript{2} result for iteration i: $G_i(\tau_i) = [G_i^{\text{new}}(\tau_i) + (i-1)G_{i-1}(\tau_i)]/i$. Note that the warm-up sweeps themselves are already started with a reasonable self-energy, such as a converged DMFT(H-I) result or a DMFT(QMC\textsubscript{2}) result for another Λ. We have tested this treatment at both small and large volumes by starting anew at $i=1$ from the converged DMFT(QMC\textsubscript{2}) self-energy, and have found agreement with the previous results to within statistical uncertainties.

We used 10,000 sweeps per QMC iteration for $\Lambda = 80$, decreasing systematically to 1000 for $\Lambda = 256$, and carried out from 20 to over 100 QMC iterations for each T, V point. At small V even at $T = 0.054$ eV we found the DMFT(QMC\textsubscript{2}) energy to settle down generally after a few QMC\textsubscript{2} iterations to maximal excursions of about ± 0.02 eV (± 0.05 eV) for $\Lambda = 80$ (256), with the root-mean-square uncertainties much smaller. Such benign behavior extends to increasingly large volumes at higher T, where these DMFT(QMC\textsubscript{2}) results begin to agree closely with DMFT(H-I). At low temperature, the scatter in our measurements as a function of iteration grows as volume is increased, especially in the transition region and beyond; however, the Trotter corrections also diminish here so there is less need for larger Λ.

Finally, we turn to the issue of performing the Fourier transform from imaginary time to Matsubara frequencies. The virtue of the fit, Eq. (12), is that it decouples Λ and N_ω allowing manageable QMC costs (smaller Λ) and yet accurate kinetic energies (larger N_ω). Most of our DMFT(QMC\textsubscript{2}) calculations took $N_\omega = 256$ for $T \geq 0.054$ eV and $N_\omega = 512$ for $T = 0.027$ eV. In the course of this work we realized that there is a volume dependence to the error in the kinetic energy from the Matsubara cutoff, and while the $N_\omega = 256$ choice at $T = 0.054$ eV leads to a small 0.04-eV error in the vicinity of the transition, it becomes more significant, 0.11 eV, at the smallest volumes considered. Since our DMFT(H-I) and DMFT(QMC\textsubscript{2}) codes have identical kinetic-energy treatment, we used the former to correct the present DMFT(QMC\textsubscript{2}) results to effective values of N_ω four times those just noted, which should give better than 0.01-eV accuracy at all volumes. We verified this by selecting DMFT(QMC\textsubscript{2}) tests with the larger N_ω. Note that this kinetic-energy treatment includes (and the cited errors reflect) an approximate evaluation of the full infinite Matsubara sum. Specifically, we approximate the high-frequency behavior of a quantity $F(i\omega)$ by $F_0(i\omega)$ with $\Sigma(i\omega) = w_1/(i\omega - \varepsilon_1) + w_2/(i\omega - \varepsilon_2)$, with parameters chosen to reproduce its $1/(i\omega)^m$ moments for $m=1-4$. Then we approximate the infinite Matsubara sum on $F(i\omega)$ by the analytic result for the infinite sum over F_0 plus the finite sum over the difference $F - F_0$.

2. Validation

Here we validate the faster QMC\textsubscript{2} algorithm of Sec. II C 1, used for much of the low-temperature thermodynamic results in this paper, against QMC\textsubscript{1} that employs the Ulmke smoothing. Such validation involves extrapolation to the limits $N_\omega \to \infty$, where the QMC\textsubscript{1} approach should provide exact results. Errors that vanish in these limits include those arising from truncation of Matsubara sums (finite N_ω), and from the Trotter approximation (finite Λ).

Figure 1 compares the DMFT kinetic energy (see Sec. II D for details of its calculation) obtained by QMC\textsubscript{2} and QMC\textsubscript{1} as a function of $\Delta \tau = \beta/\Lambda$, at a temperature $T = 0.54$ eV and atomic volume $V = 16.8$ Å3. (Note that the $\Delta \tau$ dependence is largest at small volumes, as we shall discuss further.) The line with open circles shows the QMC\textsubscript{1} results with Matsubara sums truncated after $N_\omega = \Lambda$ frequencies under the application of Ulmke’s smoothing procedure, Eq. (11). Those with squares and open triangles show the results when these sums are extended to $N_\omega = \infty$ using the Hartree-Fock (HF) Green function at high Matsubara frequencies; that is, using Eq. (2) with $\Sigma \to \Sigma_{\text{HF}} = (13/14)n_f U_f$ for $\pm \omega_n = \Lambda \pi T, \ldots, \infty$.51 In the first case (squares) the current chemical potential μ and n_f were used to define Σ_{HF}. In the second case (open triangles) the whole procedure was made self-consistent: From n_f, we calculate $\Sigma(i\omega) = (13/14)n_f U_f + \Delta \Sigma(i\omega)$ for all frequencies at a fixed $\Delta \Sigma(i\omega)$ which is defined in the preceding section. This $\Sigma(i\omega)$ yields a new n_f via Eq. (4), and so on until convergence. As can be seen, the dependence on $\Delta \tau$ is greatly reduced, as is also the case for the QMC\textsubscript{2} implementation of Sec. II C 1 (filled circles) which also uses this self-consistent treatment of the HF part of the self-energy. To avoid a large $\Delta \tau$ error, the large frequency part of the self-energy and especially the constant HF part is important to the energy, and must be self-consistently correct.
Fig. 1. Extrapolation $\Delta \tau \to 0$ of the kinetic energy at $T = 0.54$ eV and $V = 16.8$ Å3, using the QMC$_2$ (filled circles) and the QMC$_1$ algorithms (open circles, squares, and triangles; differences are due to whether and how Hartree-Fock results for the high-frequency tails of self-energy are included, see text). The lines show the extrapolations through the QMC data yielding $E_{\text{LDA}}(\Delta \tau = 0) = 49.888 \pm 0.003$ eV (filled circles) and 49.853 ± 0.022 eV (open triangles), both with a mixed quadratic and cubic fit; and 49.944 ± 0.271 eV (open circles) and 49.713 ± 0.305 eV (open squares), both with a linear fit. The results agree within twice the above standard deviation and, thus, validate the QMC$_2$ algorithm. The inset shows the two upper curves (filled circles and open triangles) as a function of $\Delta \tau^2$ over an expanded $\Delta \tau$ range. For the QMC$_2$ (filled circles) it also compares the mixed quadratic/cubic fit (solid line) with a purely quadratic fit to the data points which fulfill $\Delta \tau U_f/2 \leq 0.4$ (dotted line).

The inset of Fig. 1 shows the top two curves in an expanded scale versus $\Delta \tau^2$, which indicates 0.035-eV agreement between the two QMC methods in the limit $\Delta \tau \to 0$. We believe that effects of Matsubara cutoff are largely eliminated here and that Trotter errors predominate in these curves, which are expected to be of leading order $\Delta \tau^2$, at least for the QMC calculation of lattice models without the DMFT self-consistency complication. In order to keep the Trotter errors under control, it is recommended that $\Delta \tau$ be constrained to $\Delta \tau U_f/2 < 1$ and we have done so in this work. In fact at small volumes where the Trotter corrections are the largest, we would need to use three terms over this full range, with both $a + b \Delta \tau^2 + c \Delta \tau^3$ and $a + b \Delta \tau + c \Delta \tau^2$ providing reasonable fits to the energy. We find the ratio c/b to be significantly smaller for the first choice, which is consistent with the expectations of a leading $\Delta \tau^2$ dependence. In our DMFT(QMC$_2$) calculations we have therefore chosen to use the two-term fit $a + b \Delta \tau^2$, however, over a reduced range. The dotted line in the inset of Fig. 1, for example, suggests that $\Delta \tau U_f/2 \leq 0.4$ might be a reasonable range for this fit, given $U_f = 5.05$ eV for the volume in the figure. The two-term fit also makes more sense in the volume range of the transition, where the Trotter corrections are smaller, but there is also more scatter as a function of $\Delta \tau$. In DMFT(QMC$_2$) calculations for the whole volume grid we have used at least 1, 2, and 3 $\Delta \tau$ values for temperatures greater than, equal to, and less than 0.544 eV, respectively. In the first case it is easy to take $\Delta \tau$ so small that really no extrapolation is needed, or maybe one other value as a spot check at the smallest volume. At $T = 0.054$ eV (632 K) we used $\Delta \tau U_f/2 = 0.417$, 0.334, and 0.209. Our calculations at $T = 0.027$ eV (316 K) were limited by expense to systematically larger values, $\Delta \tau U_f/2 = 0.667, 0.477$, and 0.334, so that extrapolations to $\Delta \tau = 0$ are more uncertain. Even the smallest $\Delta \tau$ here, which corresponds to $\Lambda = 320$, leads to a $\Delta \tau^2$ value that is 2.6 times larger than its counterpart at $T = 0.054$ eV. Fortunately, we see every indication that our electronic Hamiltonian is already very close to its low-temperature limit by $T = 0.054$ eV (632 K), as these total energies agree with those at $T = 0.027$ eV within their error bars at the same finite $\Delta \tau$ values. The $\Delta \tau \to 0$ extrapolations are more benign for n_f and d which also agree well for the two temperatures. Accordingly, we do not display the $T = 0.027$ eV results in this paper, but do comment on the agreement between the two temperatures as specific quantities are presented.

We have alluded earlier to the fact that the Trotter approximation errors get larger at smaller volume in the present work. This makes sense as these are related to the commutator of the kinetic and potential energies, and should thus depend on the size of the hybridization, which gets larger as volume is reduced. We find no discernible dependence of the energy on $\Delta \tau$ for volumes in the γ phase of Ce for the range of Λ investigated, but that for the smaller volume α phase, we find $dE/d\Delta \tau^2$ to become significant and to increase in magnitude with decreasing V. Since the γ-α transition is intrinsically related to the growing importance of hybridization versus the Coulomb interaction as volume is decreased, this behavior is perhaps not surprising, although the effect turns on rather abruptly, appearing as almost another signature of the transition. Similar behavior has been seen for the periodic Anderson model.

D. Calculation of the LDA+DMFT energy

There are several possible expressions for the DMFT total energy per site, depending on whether the potential energy is obtained using the self-energy

$E_{\text{DMFT}} = \frac{T}{N} \sum_{\mathbf{k} \sigma} \text{Tr} \left[H^0_{\text{LDA}}(\mathbf{k}) + \frac{1}{2} \sum \langle i \omega_n \rangle G_{\mathbf{k}}(i \omega_n) \right] e^{i \omega_n 0^+}$,

or from a thermal average of the interaction in Eq. (1),

$E_{\text{DMFT}} = \frac{T}{N} \sum_{\mathbf{k} \sigma} \text{Tr} [H^0_{\text{LDA}}(\mathbf{k}) G_{\mathbf{k}}(i \omega_n)] e^{i \omega_n 0^+} + U_f d$.

In the latter expression,

$d = \frac{1}{2N} \sum_i \sum_{m \sigma, m' \sigma'} \langle \hat{n}_{1 f m \sigma} \hat{n}_{1 f m' \sigma'} \rangle$

(15)
is a generalization of the one-band double occupation for multiband models, which may be calculated directly in the QMC presuming the site average is given by the associated impurity problem. If we were using the exact, \(\mathbf{k} \)-dependent self-energy in these equations, Eq. (13) would be equivalent to Eq. (14) and to the Galitskii-Migdal\(^{55} \) expression for the total energy. We find Eq. (14) to be far superior in the present LDA+DMFT(QMC) calculations in regard to low-temperature stability and agreement with known limits, possibly not surprising in that it takes a thermal expectation of the true Coulomb interaction for the problem. We use Eq. (13) for the LDA+DMFT(H-I) energy in preference to Eq. (14) with a purely atomic calculation of \(d \). However, it should be noted that for vanishing intersite hybridization at large volume, as well as at high temperatures, the H-I self-energy is exact, and indeed we find agreement between QMC and H-I results for \(E_{\text{DMFT}} \) in these limits.

To evaluate the total LDA+DMFT energy \(E_{\text{tot}}(T) \) including all core and outer electrons, we add a correction to the paramagnetic all-electron LDA energy \(E_{\text{LDA}}(T) \),

\[
E_{\text{tot}}(T) = E_{\text{LDA}}(T) + E_{\text{DMFT}}(T) - E_{\text{msLDA}}(T),
\]

which consists of the DMFT energy \(E_{\text{DMFT}}(T) \) less an LDA-like solution of the same many-body model Hamiltonian Eq. (1), thus “model LDA” or \(E_{\text{msLDA}}(T) \). The latter is achieved by a self-consistent solution of Eqs. (2) and (4) for \(n_f \) taking a self-energy \(\Sigma_{\text{msLDA}} = U_f (n_f - \frac{1}{2}) \). From this, the kinetic energy is calculated by the first term of Eq. (14) and the potential energy by \(\frac{1}{2} U_f n_f (n_f - 1) \). Note that while all of these expressions are explicitly temperature dependent,\(^{54} \) the present calculations are electronic only and do not attempt to add lattice-vibrational contributions. Estimates of these contributions are similar for the \(\alpha \)- and \(\gamma \)-Ce phases, however, and appear to have little impact on the phase diagram.\(^{15} \)

Finally, one virtue of the Hamiltonian, Eq. (1), is that it is possible to reach high-temperature limits where the entropy is precisely known. One may then calculate the entropy from the DMFT energy,

\[
S_{\text{DMFT}}(T) = S_{\infty} - k_B \int_{T_{\infty}}^{T} \frac{1}{T'} \left[\frac{dE_{\text{DMFT}}(T')}{dT'} \right] dT',
\]

where \(S_{\infty} = k_B [M \ln M - n \ln n - (M-n) \ln (M-n)] = 12.057k_B \) for \(M = 32 \) states and \(n = 4 \) electrons per site for Ce.

III. THERMODYNAMICS

In this section we consider thermodynamic properties of Ce, more specifically the energy, specific heat, entropy, and free energy, over a wide range of volume \(V \) and temperature \(T \). Intercomparison of the HF, DMFT(H-I), and DMFT(QMC) methods to solve the effective LDA Hamiltonian, Eq. (1), here serves to validate all three calculations in limits where they should and do give the same answers, and also to point out shortcomings of the more approximate techniques elsewhere. Then we turn specifically to the \(\alpha \)-\(\gamma \) transition in Ce, and use the total energy, Eq. (16), and entropy, Eq. (17), to present evidence for the volume collapse transition.

![Graph showing correlation energy](image)

FIG. 2. Correlation energy, i.e., the difference between the LDA+DMFT and the paramagnetic HF (PMHF) energy, as a function of volume at five temperatures. At large volumes, the LDA+DMFT(QMC) energy agrees with the polarized HF and the Hubbard-I (H-I) solutions. But the LDA+DMFT(QMC) energy breaks away from the polarized HF energy for decreasing volume, leading to a region of negative curvature in the vicinity of the experimentally observed \(\alpha \)-\(\gamma \) transition (indicated by arrows) at low temperature.

A. Global behavior

Figure 2 shows the correlation energy of the effective LDA Hamiltonian Eq. (1), defined as the energy \(E \) of Eq. (1) minus the paramagnetic HF result \(E_{\text{PMHF}} \) for the same Hamiltonian. Results for polarized HF, DMFT(H-I), and DMFT(QMC) as obtained from Eqs. (13) and (14) in the last two cases, respectively, are compared in this manner for an extended range of atomic volumes at five temperatures. The polarized HF solutions assume ferromagnetic spin order, and display both spin and orbital polarization, with one 4f band depressed below the Fermi level and the other thirteen lying above. These HF calculations (dash-dotted curves) are seen to give good energies at large volume and low temperature (in comparison to the DMFT(QMC) (solid lines with data points), as has been observed previously for the Anderson Hamiltonian.\(^{55,56} \) Thus, the polarized Hartree-Fock solution and other polarized static mean-field methods such as orbitally polarized LDA,\(^{18-20} \) self-interaction-corrected LDA,\(^{20-22} \) and LDA+ \(U \)\(^{23,24} \) can be expected to give good low-temperature total energies in the strong coupling limit.
As the atomic volume is reduced, the difference between polarized and paramagnetic HF energy, \(E_{\text{polHF}} - E_{\text{PMHF}} \), becomes positive near 22 Å\(^3\), and the HF solution has a transition from the polarized to the paramagnetic solution, where all fourteen bands have coalesced together above but slightly overlapping the Fermi level. The highest two temperatures in Fig. 2 lie above the critical point for this transition, and so there is no polarized HF solution.

Turning to the Hubbard-I approximation, which becomes exact in the atomic limit, it is no surprise that the DMFT(H-I) results (short-dashed curves) should agree well with the DMFT(QMC) energies at large volume for all temperatures. This approximation is also exact in the high-temperature limit, as may be seen from Fig. 2, where there is also increasingly good agreement at high temperature for all volumes considered here. The agreement between the two distinct DMFT calculations in these limits provides a test of the reliability of both approaches used here.

A direct view of the temperature dependence is given in Fig. 3(a), where the energy \(E \) of Eq. (1) is plotted versus \(T \) for an atomic volume \(V \) of 46 Å\(^3\). At this relatively large volume, the DMFT(QMC) and DMFT(H-I) results agree closely and smoothly interpolate between the polarized HF energy at low temperatures and the paramagnetic HF result at high temperature (above about 15 eV, not shown). There is no temperature-induced transition in the DMFT results here, in contrast to the unphysical transition from the paramagnetic to the polarized phase within HF at \(T \sim 1 \) eV. This transition is a shortcoming of the paramagnetic HF phase in which double occupations of \(f \) electrons on the same Ce site cannot be avoided such that the paramagnetic (interaction) energy is too high.

Additional insight is provided by the corresponding entropy in Fig. 3(b). The DMFT(H-I) entropy approaches \(k_B \ln(14) \) at low temperature, which is effectively the degeneracy of the Hund’s rules magnetic moment \(k_B \ln(2J+1) \), where without intra-atomic exchange and spin-orbit interaction we get the full 14-fold degeneracy of the \(f \) level rather than the proper sixfold degeneracy for \(J = 5/2 \). At still lower temperatures, crystal-field effects are known to reduce the entropy.\(^{57}\)

Figure 3 illustrates two important aspects in which HF and more rigorous techniques differ. First, the HF transition at about 1 eV corresponds to simultaneous moment formation and magnetic ordering. In contrast, the two processes are distinct in more rigorous treatments, with the moment formation occurring in a continuous fashion at higher temperatures, culminating in the low-\(T \) plateau in Fig. 3(b), with the onset of magnetic order (if it occurs) coming at yet lower temperatures off the scale of the plot. Second, polarized HF gives good low-\(T \) energies at large volumes because one of the Hund’s rules multiplet states will be a single Slater determinant. However, its broken symmetry mistreats the entropy at lower temperatures, giving zero instead of, e.g., \(k_B \ln(2J+1) \) for \(n_f = 1 \) in the atomic limit, so that the finite-\(T \) thermodynamics are incorrect.

B. Transition

We now consider thermodynamic evidence for the \(\alpha \)-\(\gamma \) transition in Ce. While the QMC error bars restrict us from making a quantitative prediction, we argue that the present results do suggest the transition. Evidence is already apparent in Fig. 2, where the DMFT(QMC) correlation energy is seen to bend away from the polarized HF result as temperature is lowered, leading to a region of negative curvature in the vicinity of the observed transition (arrows). As the other terms (\(E_{\text{LDA}} \) and \(E_{\text{PMHF}} - E_{\text{mLDA}} \)) contributing to the total energy Eq. (16) all have positive curvature throughout the range considered in this work, this correlation contribution is then the only candidate to create a region of negative bulk modulus in the low-temperature total energy, i.e., a thermodynamic instability, and thence a first-order phase transition given by the Maxwell common tangent.

Figure 4 shows total energies Eq. (16) for the DMFT(QMC) and polarized HF methods at the three lowest temperatures of Fig. 2. The region of negative curvature just noted in the correlation energy is seen to cause a substantial depression of the DMFT(QMC) total energies (solid curves with symbols) away from the polarized HF results (dashed curves) below 35 Å\(^3\), which is most pronounced at the lowest temperature, \(T = 0.054 \) eV. The consequent shallowness in the DMFT(QMC) curve at this temperature persists over the observed range of the two-phase region (arrows), although statistical uncertainties preclude any claim of seeing negative curvature. The slope is also consistent with a \(-0.6\)-GPa pressure (long-dashed line), which is the extrap-
Johansson and Kondo temperature and the crystal-field splitting in the respective. That is, for temperatures larger than both the high-T and γ-Ce phase, yet still fairly low-T entropy, which is zero and $\sim 20\%$ on raising the temperature. The temperature dependence of the DMFT(QMC) specific heat is shown in Fig. 5 at six volumes. The most significant feature is the appearance of the low-temperature peak in the range $T=0.1-0.2$ eV, which coincides precisely with growth of the quasiparticle peak or Abrikosov-Suhl resonance at the Fermi level in the 4f spectra, as will be seen in the following section. Analogous behavior has been discussed for the one-band Hubbard model. The low-temperature peak in the specific heat is just barely discernible at the γ-phase volume of $34\,\text{Å}^3$ in Fig. 5, but becomes rather prominent by $29\,\text{Å}^3$, which is slightly larger than the α-phase volume, and then continues to broaden and shift to higher temperatures as volume is further reduced. The broad peak near 1 eV, which appears at all volumes, is due to both the 4f charge fluctuations, and also to spd-valence to 4f excitations, given that n_f increases by $\sim 20\%$ on raising the temperature to 1.4 eV. Note also in regard to the charge fluctuations that the peak in $C(T)$ should occur at significantly smaller T than the Coulomb repulsion $U_f\sim 6$ eV, as may be seen in the case of the half-filled one-band Hubbard model. Here, the specific-heat peak occurs at $T=0.208U$ in the absence of hopping $t=0$, and the location of the peak is also depressed by the band width. The volume dependence of our DMFT(QMC) entropy is shown in Fig. 6 for six temperatures. The rapid increase in the entropy over the $\alpha-\gamma$ transition ($28.2-34.4\,\text{Å}^3$) is due
precisely to the low-temperature peak in $C(T)$, which contributes to the entropy via its weighted area $\int dT C(T)/T$. Thus, at large volumes where the 4f spectral weight is Hubbard split with no contribution at the Fermi level, the low-T entropy is pinned at $k_B \ln(2J_1 + 1)$ via Eq. (17). The physical interpretation is of course that the degeneracy associated with the $2J_1 + 1$ directions of the Hund’s rules moment disappears as this moment is either screened or collapses on reducing the volume.

For completeness, we conclude this section by providing the free energy $F = E_{tot} - ST$ in Fig. 7, although the uncertain errors in the entropy and the fact that the large-V, low-T value is 50% too large [taking into account the spin-orbit coupling will give $k_B \ln(6)$ instead of $k_B \ln(14)$] make this an estimate. Given that the electronic total energy E_{tot} is near its low-T limit by $T=0.054$ eV, we consider that curve as “$T=0$,” and then include it again as $F = E_{tot} - ST$ for $T=0.054$ eV. The error bars on all curves are just from the energy. The slopes of the two straight lines give the experimental transition pressures at $T=0$ (solid line) and 0.054 eV (dashed line). Given the statistical uncertainties, the results are consistent with experiment and show that a shift of the α-γ transition volumes is primarily due to the entropy.

For completeness, we conclude this section by providing the free energy $F = E_{tot} - ST$ in Fig. 7, although the uncertain errors in the entropy and the fact that the large-V, low-T value is 50% too large [taking into account the spin-orbit coupling will give $k_B \ln(6)$ instead of $k_B \ln(14)$] make this an estimate. Given that the electronic total energy E_{tot} is near its low-T limit by $T=0.054$ eV, we consider that curve as “$T=0$,” and then include it again as $F = E_{tot} - ST$ for $T=0.054$ eV. The error bars on all curves are just from the energy. The slopes of the two straight lines give the experimental transition pressures at $T=0$ and 0.054 eV, and arrows mark the observed boundaries of the α-γ transition at room temperature. It is obvious that the curvature of $F(V)$ is indeed smaller on the α-Ce side than on the γ-Ce side, i.e., the compressibility is larger. This was found experimentally and motivated Eliashberg and Capellmann to put forward their theory with symmetry breaking and a diverging compressibility on only the α-Ce side of the critical point. Unfortunately, the QMC error bars prevent us from a quantitative estimate of the compressibility, and the behavior we see need not imply any symmetry breaking. The essential conclusion of Fig. 7 is that these results are consistent with experiment, though stronger claims are precluded by the statistical uncertainties. Nonetheless, the results of this section which we find compelling are the way in which $E_{tot}(V)$ systematically...
develops a shallowness in the vicinity of the α-γ transition as temperature is lowered, and the structure in the specific heat and entropy.

IV. SPECTRA

In this section, we discuss the spectral changes through the α-γ transition. To obtain the physical spectrum $A(\omega) = -(1/\pi) \text{Im} G(\omega)$, one has to analytically continue the QMC data from the imaginary time (Matsubara frequency) representation to real frequencies ω:

$$ G(\tau) = \int_{-\infty}^{\infty} d\omega \frac{e^{\tau \mu - \omega}}{1 + e^{\beta \mu - \omega}} A(\omega). $$

As one can see in Eq. (18), the values of $A(\omega)$ at large (positive or negative) frequencies affect $G(\tau)$ only weakly because the integral kernel is exponentially small in this regime. To deal with this ill-conditioned problem that is particularly cumbersome in the presence of the statistical QMC error, we employ the maximum entropy method. When interpreting the results later on, we have to keep in mind, however, that there is a significant error at larger frequencies which tends to smear out fine features such that, e.g., inner structures of Hubbard bands are not necessarily resolved. In Sec. IV A, we present the spectra of the f and valence electrons of fcc Ce as a function of volume and discuss the changes at the α-γ transition. The spectra obtained are compared to photoemission and bremsstrahlung experiments in Sec. IV B.

A. Change of the spectra at the α-γ transition

In Sec. III we noted a region of negative curvature in the correlation energy at volumes consistent with the experimental α and γ volumes, leading to a shallowness in the total energy and suggesting a first-order phase transition at lower temperatures. To further elucidate the nature of the ongoing changes, we study the evolution of the f-electron spectrum as a function of volume for fcc Ce at $T = 0.054$ eV (632 K) in Fig. 8. This temperature is close to the critical point ($T = 600 \pm 50$ K) at which the first-order α-γ transition disappears experimentally. From the continuous evolution of the energy versus volume curves, we expect, however, similar changes above the critical point, which are not yet strong enough to cause a first-order phase transition. At a very small volume, $V = 20 \, \text{Å}^3$, most of the spectral weight is seen to be in a big quasiparticle peak or Abrikosov-Suhl resonance at the Fermi energy, but some spectral weight has already been transferred to side structures which would be interpreted as upper and lower Hubbard bands in a Hubbard model. Moving closer to the α-γ transition (between 28.2 and 34.4 Å^3 at room temperature), the α-Ce-like spectra at $V = 29 \, \text{Å}^3$ show this three peak structure to become more pronounced with a sharp Abrikosov-Suhl resonance and well-separated Hubbard bands. The spectral weight of the Abrikosov-Suhl resonance is further reduced and smeared out when going to the γ phase ($V = 34 \, \text{Å}^3$) and finally disappears at large volumes ($V = 46 \, \text{Å}^3$), at least at $T = 0.054$ eV.

FIG. 8. Evolution of the 4f electron spectrum with volume at $T = 632$ K; offset as indicated. When going from small to large volume, the weight of the central Abrikosov-Suhl resonance decreases and practically fades away at the α-γ transition from $V = 29$ to $34 \, \text{Å}^3$. The residual weight around the Fermi energy at $V = 34 \, \text{Å}^3$ indicates a smeared out Abrikosov-Suhl resonance as it is to be expected if the Kondo temperature of γ-Ce is below $T = 632$ K.

Altogether, we observe, as a function of volume, the crossover from a structure that differs only slightly from a one-peak structure, to a three-peak structure, and finally to a two-peak structure. The physical interpretation is that the f electrons are somewhat correlated at low volumes, where the large quasiparticle peak above the Fermi energy resembles (to a first approximation) the one-peak structure of the uncorrelated one-particle theory or the LDA. At larger volumes, the system is highly correlated, there is a magnetic moment imposed by the electrons in the lower Hubbard band, but the f electrons at the Fermi energy are still itinerant. Finally at the largest volumes, the f electrons are localized and the local magnetic moment is fully developed. Here, the most dramatic change of the weight of the quasiparticle peak coincides with the observed region of negative curvature in the correlation energy. We thus conclude that the drastic reduction of the weight of the quasiparticle peak is related to the energetic changes in the correlation and total energies that are consistent with the first-order α-γ transition.

These features and also the three-peak (Kondo-like) structure of the α and γ phases agree with the Kondo volume collapse scenario. On the other hand, many-body calculations show that the behaviors of the Anderson and Hubbard models—paradigms for the Kondo volume collapse and Mott transition scenarios, respectively—are remarkably similar in regard to their spectra and other properties at finite temperatures. One important difference, however, is the ab-
sence of spectral weight at the Fermi level in the “large volume” phase of the Mott-Hubbard transition, as, for example, in V$_2$O$_3$, in contrast to the reduced but still extant spectral weight in our g-Ce results and the experiment, which is a more Kondo-like feature.

In Fig. 9, we compare the 4f electron spectrum in the α and γ phases to results at higher temperatures ($T = 0.14$ eV) from Ref. 42. Most notably, the Abrikosov-Suhl resonance in the α-phase ($V = 29 \, \text{Å}^3$) becomes much sharper when going from $T = 0.14$ eV to 0.054 eV. The reason for this is that the Abrikosov-Suhl resonance is smeared out thermally at $T = 0.14$ eV ($1580 \, \text{K}$) since this temperature is comparable to the Kondo temperature, which we estimate to be 0.18 eV ($2100 \, \text{K}$) from the full width at half maximum [LDA + DMFT(NCA) calculations yield $1000 \, \text{K}$, see Ref. 40]. This Kondo temperature is only a crude estimate that might also be somewhat reduced if the spin-orbit coupling, which splits off states from the Fermi energy, is taken into account. Nonetheless, it reasonably agrees with experimental estimates of $T_K = 945$ K and $1800–2000$ K for the Kondo temperature obtained from electronic and high-energy neutron spectroscopy, respectively. In contrast, the peak in the γ phase remains smeared out such that one would assume a Kondo temperature lower than 0.054 eV (632 K); the experimental estimates are $T_K = 95$ K (Ref. 5) and 60 K (Ref. 59). The changes in the rest of the spectrum are much less dramatic. The position of the upper Hubbard band is fixed while the lower Hubbard band, which has a very small spectral weight, moves closer to the Fermi energy upon decreasing the temperature.

While the f electrons undergo a transition from itinerant character at low volumes with a quasiparticle resonance at the Fermi energy, to localized character at larger volumes without such a resonance, the (spd) valence electrons remain metallic at all volumes. This can be seen in Fig. 10, which shows the valence spectral function $A(\omega)$ averaged over the spd orbitals. It is finite at the Fermi energy for all volumes, such that Ce is always a metal. The biggest change in the spectrum is the decreasing valence bandwidth when increasing the volume, which is simply due to the reduced overlap of the valence orbitals as interatomic distances increase. The effect of electronic correlations is less obvious. But, one can note a dip in the valence spectrum in the vicinity of the Fermi energy which is to be expected to coincide with the Abrikosov-Suhl resonance in the f spectrum. This dip is most pronounced at lower volumes where the f-electron Abrikosov-Suhl resonance has most spectral weight.

B. Comparison to experiment

The LDA + DMFT(QMC) calculation of fcc Ce suggests a volume collapse approximately at the experimental volumes. To further test whether this theory actually describes fcc Ce, we now compare our α- and γ-Ce spectra with photoemission spectroscopy and bremsstrahlung isochromatic spectroscopy. To this end, we combined the f and spd spectra of Sec. IV A with areas normalized to 14 and 18, respectively, to yield the full $spdf$ density of states, and smoothed it with the experimental resolution of approximately 0.4 eV. The comparison is shown in Fig. 11 for α and γ Ce. Although there are no free parameters in our LDA
FIG. 11. Comparison of the LDA + DMFT(QMC) spectra with experiment (circles). Although there are no free parameters in the calculated spectrum, the agreement is very good, in particular at the Fermi energy ($\omega = 0$). The additional structure in the upper Hubbard band which is seen in the experiment is likely due to the exchange interaction that was neglected in our calculation.

FIG. 12. Number of 4f electrons n_f vs volume at four temperatures. At low temperatures and in the vicinity of the α-γ transition, n_f is very close to 1.

V. LOCAL MOMENT AND 4f OCCUPATIONS

Important additional information about the α-γ transition and the effects of electron correlation in Ce is contained in the number of 4f electrons per site n_f, the double occupation d, and quantities derived from these such as the fraction of sites $w(f^n)$ with $n = 0, 1, 2$ electrons, and the local magnetic moment. These parameters can discriminate between the various models, as, for example, the promotional model\(^{11}\) assumes a considerable change in the number of 4f electrons at the α-γ transition, in contrast to the Kondo volume collapse\(^{25}\) and Mott transition\(^{13}\) scenarios which do not. The latter two, on the other hand, distinguish themselves by assuming a small and large change of the magnetic moment, respectively.

Figure 12 gives n_f as a function of volume at four temperatures.\(^{65}\) The lowest curve at $T = 0.054$ eV (632 K) is already very close to the low-T limit, as our results at half this temperature are the same to within generally 0.004, or at most 0.01 electrons per site. There are two main tendencies: With decreasing V, n_f increases due to the upward motion of the 6s, p levels relative to the 4f level under compression; it also increases with T due to the thermal occupation of the large 4f density of states lying above the Fermi level. Super-
imposed on this behavior is, at low temperatures, an abrupt reduction of \(n_f \) in the observed two-phase region (marked) as volume is reduced, an anomaly that is annealed away by \(T = 0.5 \) eV similar to the case of the total energy. This effect leads to a number of \(4f \) electrons close to 1, ruling out the promotional model \(^{11}\) and suggesting Kondo physics given the sharp quasiparticle peak seen in the preceding section. Quantitatively, we get a 4\% reduction in \(n_f \) across the two-phase region from 1.035±0.017 to 0.993±0.010 at \(T = 0.054 \) eV. Similar behavior is seen in the 10\% drop from 1.014 to 0.908 of Zöllf et al. \(^{40}\) in their LDA + DMFT(NCA) calculations, and the 11\% reduction from 0.971±0.006 to 0.861±0.015 electrons/site of Liu and co-workers, \(^5\) who fitted a single impurity Anderson model to the experimental 4\(f \) spectrum. The reason for the drop in \(n_f \) is a systematic increase in the double occupation \(d \) under compression. Since \(d \) is the potential energy divided by \(U_f \), the energy cost associated with increasing \(d \) can be ameliorated by reducing \(n_f \).

Since there is little chance of more than doubly occupied sites in Ce at low temperature, \(n_f \) and \(d \) provide sufficient information to obtain the fractions of sites with various integral \(f^n \) occupations,

\[
\begin{align*}
w(f^0) &= 1 - n_f + d, \\
w(f^1) &= n_f - 2d, \\
w(f^2) &= d.
\end{align*}
\]

Figure 13 shows our DMFT(QMC) results for these weights at \(T = 0.054 \) eV, which are also close to the low-temperature limit. At large volume one sees that each site nearly always has one \(f \) electron, and that empty or doubly occupied sites are rare, as would be expected for \(n_f \sim 1 \) in the absence of significant hybridization to move these electrons to either \(f \) or \(v \) (spd valence) states on neighboring sites. For the \(f \) electrons to begin to move around from one site to another in any independent fashion under the influence of larger \(ff \) hybridization, or for there to be virtual charge fluctuations of the form \(f^1v^3 \rightarrow f^0v^4 \) and \(f^1v^3 \rightarrow f^2v^2 \) due to increased \(fv \) hybridization, it is clear in each case that both empty and doubly occupied sites must become more common at the expense of singly occupied sites if the volume is reduced, as evident in Fig. 13. Note that these changes are especially dramatic over the experimental two-phase region (marked).

The filled symbols in Fig. 13 show the impurity Anderson model results of Liu et al. \(^5\) at the observed \(\alpha \) and \(\gamma \)-Ce volumes; the large open symbols, the DMFT(NCA) results of Zöllf and co-workers. \(^{40}\) Our DMFT(QMC) values are \(w(f^0), w(f^1), w(f^2) = 0.013±0.019 \) (0.118±0.025), 0.939±0.028 (0.771±0.033), and 0.048±0.009 (0.111±0.008) for the \(\gamma \) (\(\alpha \)) volumes, respectively. The two DMFT calculations agree well within these uncertainties for all three populations \(w(f^0) \) at the larger \(\gamma \)-phase volume, and also with the impurity Anderson model value for \(w(f^1) \); although for the two small populations, they obtain \(w(f^0) < w(f^2) \) in reverse order to the values of Liu and co-workers. \(^5\) The most significant difference at the \(\alpha \)-Ce volume is the rather larger double occupancy, \(d = w(f^2) = 0.111±0.008 \), obtained by our DMFT(QMC) calculations in comparison to smaller values 0.044 and 0.026 obtained by the the DMFT(NCA) and impurity Anderson model, respectively. Temperature is unlikely to be a factor here, as we obtain \(n_f \) and \(d \) unchanged within our error bars at half the temperature of the DMFT(QMC) results in Fig. 13, e.g., \(d = w(f^2) = 0.108±0.008 \) at \(T = 0.027 \) eV (316 K). Note that there is an asymmetry between \(f^1v^3 \rightarrow f^0v^4 \) and \(f^1v^3 \rightarrow f^2v^2 \) fluctuations in the impurity model, with the former predominating in the Kondo effect and the later leading to less spin-dependent effects (Appendix B, Ref. 27). Since the extent of these fluctuations are measured by \(w(f^0) \) and \(w(f^2) \), respectively, these relative differences in \(d = w(f^2) \) have direct physical meaning.

As will be seen shortly, larger values of \(d \) also indicate less correlation.

There are some differences between the three calculations, however, which might account for differing \(w(f^n) \) predictions.

(i) Our calculated Coulomb interaction for \(\alpha \)-Ce, \(U_f = 5.7 \) eV, is slightly smaller than the \(U_f = 6 \) eV employed in Refs. 40 and 5, and there may also be small differences in the one-particle part of the effective Hamiltonian, Eq. (1), due to the use of different LMTO approaches. \(^{64}\)

(ii) Liu et al. employ an impurity Anderson model whereas both we and Zöllf et al. use a periodic Anderson type of model including \(ff \) as well as \(ff \) valence hybridization. All three calculations extract some or all of their effective Hamiltonian parameters from LDA. The two DMFT calculations also deal with an auxiliary impurity Anderson
model in the course of their solution, and all three impurity Anderson models yield the local $4f$ density of states of the lattice LDA calculation when $U_f=0$. However, for finite U_f, the f-valence hybridization in the impurity Anderson model of Liu et al. remains, in principle, unchanged; whereas that of the DMFT auxiliary impurity models becomes strongly renormalized by the presence of the self-energy, as evident in Fig. 1 of Zöllf and co-workers.\(^{40}\) It should be noted, however, that Liu et al. do not simply use the LDA hybridization in their finite-U_f calculations, but rather rescale so as to obtain excellent agreement with spectroscopy data, giving their hybridization some experimental justification.

(iii) Finally, in contrast to the DMFT(QMC), both DMFT(NCA)\(^{40}\) and the $1/N$ approach\(^{65}\) of Ref. 5 are based on perturbation expansions in the hybridization strength, a quantity that gets larger with reduced volume. Thus, while these two approximations are controlled by the smallness of the hybridization strength and also by $1/N$ (we have $N=14f$ orbitals), there are nonetheless larger corrections when the hybridization is increased, i.e., when going to the more itinerant α-Ce. Note in this context that the ratio of Coulomb interaction to an effective bandwidth determined by the total $f-f$ and f-valence hybridization changes from 3.8 to 2.5 across the γ-α transition.\(^{5}\)

It is possible to quantify the degree of f-electron correlation by noting certain limiting values of d. A natural minimum is provided by the strongly correlated ground state of Eq. (1) in the atomic limit, where d is a piecewise linear function of n_f, with $d=d_{\text{min}}=\text{max}(0,n_f-1)$ for $n_f\leq 2$. Similarly, $d_{\text{max}}=(13/28)n_f^2$ from Eq. (15) in the uncorrelated limit $\langle n_1^2 \rangle=\langle n_1 \rangle\langle n_2 \rangle$, which is approached for volume $V\to 0$ leading to a vanishing ratio of Coulomb interaction to bandwidth. Figure 14 shows a plot of the ratio $(d_{\text{max}}-d)/d_{\text{max}}$ for the present Ce calculations at $T=0.054$ eV, which reflects strong and weak correlation limits at 1 and 0, respectively. Note the polarized to paramagnetic HF transition at $V=20$ Å\(^3\) for decreasing volume, and the fact that the paramagnetic HF result is completely uncorrelated ($d=0$ as expected. The fact that the d ratio in this case is not precisely zero is due to a small amount of orbital polarization arising from the fact that $4f$ bands of different symmetry overlap the Fermi level to slightly different extent, whereas d_{max} was defined for all spin-orbital occupations to be $n_f/14$.

The combination of increasing d and decreasing n_f causes a sharp decrease in correlation (delocalization) of the DMFT(QMC) result for decreasing volume through the observed γ-α transition (marked), in agreement with tenets of the Mott-transition model.\(^{13,66}\) The value of the DMFT(QMC) d ratio is 0.76±0.08 at the α volume, combining all of the uncertainties in both d and n_f. While this value is certainly less correlated than the DMFT(NCA)\(^{40}\) (large open circles) and impurity Anderson model\(^{5}\) (filled circles) predictions at 0.89 and 0.92, respectively, it is far from the kind of uncorrelated behavior seen in the paramagnetic HF of Fig. 14 or, presumably also, in the LDA. Even at the smallest volumes considered, the DMFT(QMC) d ratio still suggests the presence of significant correlation, which is entirely consistent with the remnant Hubbard sidebands in this range as discussed in the preceding section. Most notable in the DMFT(H-I) curve is a glitch at about $V=17$ Å\(^3\) which is a consequence of the behavior in n_f (not shown): Within DMFT(H-I), n_f is pinned at 1 for decreasing volume until $V=17$ Å\(^3\), at which point it increases and the system becomes mixed valent.

Turning to the local magnetic moment, our approximations [neglect of spin orbit, intra-atomic exchange, and the $4f$ crystal-field splitting in Eq. (3)] have more serious implications for this quantity than others, and so we can provide only an estimate. Consistent with these approximations we take

\[
\langle \hat{n}_{nfm}\sigma\hat{n}_{nfm'}\sigma' \rangle = \begin{cases}
\frac{n_f}{14} & \text{if } m\sigma = m'\sigma' \\
\frac{d}{91} & \text{if } m\sigma \neq m'\sigma',
\end{cases}
\]

such that the local magnetic moment becomes

\[
\langle m^2 \rangle = \sum_m \langle \hat{n}_{nfm} - \hat{n}_{nfm} \rangle^2 = n_f - (2/13)d,
\]

indicating whether a local spin moment exists. Note that this quantity does not contain information about long-range magnetic order, aside from the fact that a finite moment would be required for such order. Also note that $\langle m^2 \rangle$ is unlikely to vanish. Even if one just statistically distributes electrons with

![FIG. 14. Double occupation ratio $(d_{\text{max}}-d)/(d_{\text{max}})$ and local magnetic moment $\langle m_f^2 \rangle$ (triangles) as a function of volume at $T=0.054$ eV. In the former case, we compare the LDA + DMFT(QMC) results with our HF and LDA + DMFT(H-I) results as well as with the LDA + DMFT(NCA) by Zöllf et al.\(^{40}\) and the Anderson model calculations by Liu et al.\(^{5}\) The double occupancy increases when going from γ- to α-Ce (experimental volumes as indicated), i.e., the electrons become more itinerant or less correlated. This effect is most pronounced in our LDA + DMFT(QMC) results; however, the d ratio is still far from the uncorrelated value $d=d_{\text{min}}$, i.e., α-Ce is still strongly correlated.](image-url)
arbitrary \(i, m, \) and \(\sigma \), some sites will have electrons with the same spin and thus \(\langle m_z^2 \rangle \) will be finite, but it will be smaller than its maximal value obtained in the localized regime where \(d \) is minimal.

The spin, orbital, and total angular momentum expectations can be expressed as

\[
\langle S_z^2 \rangle = (3/4)\langle m_z^2 \rangle, \quad \langle L_z^2 \rangle = 12\langle m_z^2 \rangle, \quad \text{and} \quad \langle J_z^2 \rangle = (51/4)\langle m_z^2 \rangle
\]

due to the degeneracies in Eq. (20). Note that in the atomic limit \(\langle n_f, 1/2 \rangle \sim 0 \) these expressions correctly give \(S_z^2 = 1/2 \) and \(L_z^2 = 3 \), although \(\langle J_z^2 \rangle \) averages over the two spin-orbit multiplets. Our DMFT(QMC) result for \(\langle m_z^2 \rangle \) at \(T=0.054 \) eV is also provided in Fig. 14 (bottom dotted curve with open triangles), where this quantity is seen to drop by 5% from the \(\gamma \) to the \(\alpha \) volume. This may be compared to 11% and 12% drops for the DMFT(NCA) and impurity Anderson model calculations, respectively, based on their values of \(n_f \) and \(d = w(f^2) \).

High-energy neutron scattering experiments observe single-magnon magnetic response from 0.8 to 4\(\times \)10\(^{-5} \) eV. For larger energies \(\omega \), the single-magnon response is completely removed from the magnetic scattering. The magnetic energy spectrum is peaked near the Fermi level, and the magnetic energy at the Fermi level is free to respond to the field. The latter must dominate as one approaches the field. The latter must dominate as one approaches the field. The latter must dominate as one approaches the field.

The persistence of a still robust (albeit slightly reduced) local 4\(f \) moment into the \(\alpha \) phase as suggested here supports the Kondo volume collapse scenario, in that the observed temperature-independent Pauli-like paramagnetism of the \(\alpha \) phase cannot exist when the valence electrons screen out these local moments. Orbitally polarized and self-interaction corrected LDA results suggest that the moment actually collapses to nothing in the \(\alpha \) phase of Ce and its analog in Pr. However, these calculations really measure spin and orbital polarization analogous to \(\langle m_z \rangle \), and therefore describe a loss of magnetic order in the \(\alpha \)-like phases without providing information about the local moment. Indeed, there can be a local moment \(\langle m_z^2 \rangle \) even in the fully uncorrelated limit, as noted earlier, since \(\langle m_z^2 \rangle = n_f (2/3)d_{\text{max}} - n_f(1-n_f/14) \) can be significant away from empty or filled bands. Note that one may have temperature-independent paramagnetism in the presence of local moments both if there is correlated Kondo screening of these moments, as noted above, as well as by Pauli’s original one-electron process in which only electrons in states near the Fermi level are free to respond to the field. The latter must dominate as one approaches the uncorrelated \(V = 0 \) limit.

VI. SUMMARY AND DISCUSSION

We have calculated thermodynamic, spectral, and other properties of Ce metal over a wide range of volumes and temperatures using the merger of the local-density approximation and dynamical mean field theory (LDA + DMFT). The DMFT self-energy was generated by rigorous QMC techniques, including a faster implementation that has facilitated lower-temperature results and is described in detail. Our LDA + DMFT results provide a comprehensive picture of correlation effects in compressed Ce, and their fundamental role in the first-order \(\alpha-\gamma \) transition. First results of this effort have been published in Ref. 42.

At a large volume, we find a Hubbard-split 4\(f \) spectrum, the associated local magnetic moment, and an entropy reflecting the degeneracy in the moment direction. This phase is well described by the Hubbard-I approximation and its energy, but not its entropy, also agrees with the polarized Hartree-Fock solution. As volume is reduced, a quasiparticle and Abrikosov-Suhl resonance begins to develop at the Fermi level in the vicinity of the \(\alpha-\gamma \) transition, and the entropy starts to drop. At the same time, the 4\(f \) double occupation grows whereas the number of 4\(f \) electrons remains close to 1. The temperature dependence of the quasiparticle peak is consistent with a significantly larger Kondo temperature in the \(\alpha \) phase than in the \(\gamma \) phase, and the parameter-free LDA + DMFT spectra are in good agreement with experiment for both \(\alpha \)- and \(\gamma \)-Ce. In the range where the quasiparticle peak grows dramatically, the correlation energy as a function of volume is seen to have a negative curvature. This leads to a growing shallowness in the total energy as temperature is reduced and is consistent with the first-order \(\alpha-\gamma \) transition within our error bars. Our results suggest that the temperature dependence of the transition pressure is primarily due to the entropy. Finally, if the volume is reduced below that of the ambient \(\alpha \) phase, the quasiparticle peak grows at the expense of the Hubbard sidebands, yet these Hubbard sidebands persist even at the smallest volumes considered.

The MT and KVC scenarios are based on the one-band Hubbard and the periodic (or more approximate impurity) Anderson models as paradigms. The classification of our results in terms of these two standard theories requires distinguishing between the more general interpretation of the MT in the many-body community, e.g., applied to such materials as \(\text{V}_2\text{O}_3 \) and the ideas of Johansson and members of the local-density functional community as applied to the \(f \)-electron metals. In the former case, correlated solutions of both model Hamiltonians show similar features at finite temperature such as persistence into the more weakly correlated regime of the local moment and residual Hubbard splitting, just as seen here for \(\alpha \)-Ce. The similarity between the two models can be understood from the following consideration. The conduction electrons in the periodic Anderson model are noninteracting. Thus, they only enter quadratically in the effective action and can be integrated out by a simple Gauss integration. This results in an effective one-band model for the \(f \) electrons of the periodic Anderson model which can behave very much like the Hubbard model not only at finite temperature, but, depending on the choice of \(f-d \) hybridization, also at \(T = 0 \).

One might try to distinguish between the two scenarios by whether the transition is caused by changes of the \(f-f \) (MT) or \(f \)-valence (KVC) hybridization. But, since realistic calculations like the present include both, this distinction is rather problematic. Another difference can be addressed unambiguously, i.e., whether the low-temperature \(\gamma \) phase has an Abrikosov-Suhl resonance (KVC) or not (MT). We observe the former, in agreement with experiment. The energy scale
of this \(\gamma\)-Ce Abrikosov Suhl resonance is very small such that we obtain a thermally smeared out structure instead of a sharp resonance. The smallness of the energy scale also implies that the effect on the total energy is very minor. Because of this, the low-temperature energy (but not the entropy) of \(\gamma\)-Ce may also be adequately described by static mean-field techniques like our HF calculation as well as a number of local-density functional modifications: orbitally polarized LDA,18–20 self-interaction corrected LDA,20–22 and LDA+U.23,24 These approximations have a frequency-independent (static) self-energy and provide a splitting of the 4\(f\) band into two bands by an (artificial) symmetry breaking. While our HF calculations as well as LDA+U work23 for Ce give a transition at too small volume, one may drive the onset of the symmetry breaking closer to the volume of the \(\alpha\)-\(\gamma\) transition by reducing the the 4\(f\) Coulomb interaction \(U_f\). Such a reduced interaction strength is naturally achieved within the orbitally polarized LDA calculations that omit \(U_f\) and employ the weaker intra-atomic exchange interaction to achieve the symmetry breaking.

A major point of debate between the KVC scenario and Johansson’s interpretation of the MT picture is whether the \(\alpha\) phase of Ce is strongly correlated (KVC) or not (MT). Our results suggest that \(\alpha\)-Ce is strongly correlated with a three-peak structure consisting of the two Hubbard peaks and central quasiparticle bands as in the KVC picture.25–27 In contrast, the MT model as advocated by Johansson3 and others18–23 predicts a single peak associated with uncorrelated, bandlike \(f\) electrons. We do see a rapid increase in double occupation \(d\) across the transition, which is consistent with the delocalization ideas of this MT scenario. However, the actual value of \(d\) in the \(\alpha\) phase is far from uncorrelated, although it indicates considerably less correlation than in the KVC picture.5 It appears that this perspective of the MT is motivated by the LDA results, and that if one were to fully take into account electronic correlations, one would also observe a correlated three-peak solution as in the Hubbard model.34 This correlated solution would also have preformed local magnetic moments, which would be screened at small energies on the scale of the width of the Abrikosov-Suhl resonance, as in the KVC picture, whereas the uncorrelated MT solution does not develop such local moments.

Since we find a strongly correlated \(\alpha\) phase, the question remains why the structural and volume dependence of the total energy in the \(\alpha\)-Ce regime is so extremely well described by normal paramagnetic LDA and its gradient corrected improvements.16,17 This point is one of the strongest arguments advanced by Johansson13 and others16–23 that \(\alpha\)-Ce-like phases should be weakly correlated. A logical explanation would be that LDA may get the interactions between the quasiparticles correct but not their formation energy. The interactions are perhaps governed by the significant weight in the central Fermi-level-peak, which resembles the uncorrelated LDA solution, while the formation energy may involve the residual Hubbard sidebands in some way. Thus, the still very significant correlation may provide only a constant contribution to the total energy in the \(\alpha\)-Ce regime, so that the volume and structural dependence is still well represented. This would be consistent with the energy shift between \(\alpha\) and \(\gamma\) phases employed by Johansson et al.15 in their LDA-based modeling of the transition.

ACKNOWLEDGMENTS

Work by A.K.M. was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. K.H. acknowledges support by the Alexander von Humboldt foundation, and R.T.S. from NSF-DMR-9985978. We are grateful for the QMC code of Ref. 39 (Appendix D) which was modified for use in part of the present work. We thank A. Sandvik for making available his maximum entropy code, I. A. Nekrasov for providing the digitized experimental spectra, and G. Esirgen, J. W. Allen, and O. Gunnarsson for useful discussions.

The term “Mott transition” is associated on the one hand with Johansson’s perspective supported by modified LDA calculations of the rare-earth transitions, and on the other hand with correlated solutions of Hubbard-type models. Both points of view are based on the same Mott transition of the Hubbard model, but differ in the theoretical approach. We use the modifier “correlated” to distinguish the latter from the former.

