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Compressible ferrimagnetism in the depleted periodic Anderson model
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Tight-binding Hamiltonians with single and multiple orbitals exhibit an intriguing array of magnetic phase
transitions. In most cases the spin ordered phases are insulating, while the disordered phases may be either
metallic or insulating. In this paper we report a determinant quantum Monte Carlo study of interacting electrons
in a geometry which can be regarded as a two-dimensional periodic Anderson model with depleted interacting
(f ) orbitals. For a single depletion, we observe an enhancement of antiferromagnetic correlations and formation
of localized states. For half of the f orbitals regularly depleted, the system exhibits a ferrimagnetic ground
state. We obtain a quantitative determination of the nature of magnetic order, which we discuss in the context of
Tsunetsugu’s theorem, and show that, although the dc conductivity indicates insulating behavior at half filling,
the compressibility remains finite.
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I. INTRODUCTION

Tight-binding Hamiltonians provide insight into many of
the properties of strongly correlated electron systems, from
magnetism and metal-insulator transitions to superconductiv-
ity and charge ordering [1,2]. The simplest of these, the single
band Hubbard model (HM), is known, for example, to be
insulating and to exhibit long range antiferromagnetic (AF)
order at half filling on a square lattice [3,4] for any ratio
of the on-site interaction U to hopping t and to undergo a
paramagnetic metal to insulating AF transition above a nonzero
critical Uc on other geometries such as the honeycomb lattice.
The Nagaoka theorem [5], notwithstanding the ferromagnetic
behavior, which is robust within mean-field theory [2,3], seems
to be difficult to achieve when the single band Hamiltonian is
solved with more exact methods [6].

The generalization of tight-binding Hamiltonians to multi-
ple bands opens up a richer variety of magnetic behavior. In
the case of the periodic Anderson model (PAM), the interplay
of the on-site repulsion Uf on localized (f ) orbitals with the
hybridization V to a noninteracting conduction (d) band results
in a competition of long range magnetic order arising from
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction (at
small V ) and spin liquid behavior (at large V ) [7–10]. Not un-
commonly in these more complex situations, orbital ordering
coexists with spin ordering [11].

Many of these models offer quite remarkable insights into
strongly correlated materials; for instance, the HM replicates
several prominent qualitative features of cuprate superconduc-
tors, such as the AF and d-wave pairing, as well as stripe for-
mation [12–17]. The AF-singlet transition and strongly renor-
malized effective electronic mass in the PAM, and its strong
coupling limit (the Kondo lattice model), helps to explain
different ground states in heavy-fermion materials [8,18–22].
Manganites [23] and iron-pnictide superconductors [24] are
also materials for which appropriate multiorbital models have

been useful for developing an understanding of magnetism,
pairing, charge order, and transport.

Geometries which can be regarded as arising from regular
‘depletions’ of the square lattice HM have also been explored,
both to answer fundamental questions about types of magnetic
order and for the understanding of specific materials. An
example of the former is Lieb’s theorem [25], which rigorously
demonstrates that a 1/4-depleted square lattice possesses
ground state ferrimagnetic behavior. Instances of the latter
are the 1/5-depleted square lattice which can explain spin
liquid behavior in CaV4O9 [26,27], and the 1/3-depleted
square lattice which sheds light into the properties of layered
nickelates such as La4Ni3O8 [28–30]. In these situations, the
depletion converts the initial single band nature to a model
with multiple bands. In the case of the Lieb lattice, one of
these bands is dispersionless, a feature which is intimately
tied to the appearance of ferromagnetism. (Random) site
depletion of tight-binding Hamiltonians has also been used to
understand the effects of the substitution of nonmagnetic atoms
for magnetic ones, for example the replacement of Cu by Zn
in cuprate materials [31–34]. In cases where the underlying
geometry contains triangular lattice coordination, depletion
can aid AF behavior by reducing frustration [35], e.g., in CeAl3.
More complex cases, such as depletion in the PAM, seem
relevant to understand the formation of magnetism in heavy
fermion materials. In this case, mean-field and perturbation
theory [36–40] have provided evidence of a ferromagnetic
ground state.

In view of this, we investigate the combination of these
two avenues, a PAM which begins already with two bands,
but is then subject to site depletion. Our main conclusion
is that depletion can drive the PAM into a magnetically
ordered state, even for parameter choices which are deep in
the singlet phase for the undepleted lattice. We also show that
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an unusual property develops in which the ordered regime is
also compressible.

The organization of this paper is as follows: In Sec. II
we define the tight-binding Hamiltonian precisely, review the
determinant quantum Monte Carlo (DQMC) methodology [41]
briefly, and define the observables used to characterize the
model’s properties. Section III presents data on the effect
of the removal of a single site; the resulting enhanced
spin response provides an initial clue to the robustness of
magnetism in the regularly depleted geometry, described in
Sec. IV. Section V analyzes data for the compressibility and
the conductivity, and Sec. VI contains our conclusions.

II. MODEL

The depleted PAM we consider here is described by the
Hamiltonian

Ĥ = −t
∑
〈i,j〉,σ

(d†
iσ djσ + H.c.) − V
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′
f

†
iσ fiσ , (1)

where the unprimed sums over i run over a two-dimensional
square lattice, with 〈i,j〉 denoting nearest neighbors, while
the primed sums are restricted to the set of sites having f

orbitals. The specific depletion patterns will be described in
the coming sections. The first term on the right-hand side of
Eq. (1) represents the hopping of d electrons, while the second
term contains the hybridization V between d and f orbitals.
The Coulomb repulsion on localized f orbitals is included in
the third term, with n

f

iσ = f
†
iσ fiσ being the number operator

of f electrons. εd
i and ε

f

i are the onsite energies of d and
f -orbitals, respectively, and μ is the chemical potential. The
hopping integral t ≡ 1 defines the scale of energy.

We analyze Eq. (1) using the DQMC method, a numerically
exact technique in which all sources of error, statistical (from
finite sampling times) and systematic (from the discretization
of the inverse temperature β), can be removed to the desired
degree of accuracy. The basic idea of the method is the use of
the Trotter-Suzuki decomposition to separate the exponentials
of the one-body and two-body pieces, K̂ and P̂ , respectively,
in the partition function, Z = Tr e−βĤ = Tr [(e−�τ (K̂+P̂))l] ≈
Tr [e−�τ K̂e−�τ P̂e−�τ K̂e−�τ P̂ · · · ]. Here l = β/�τ is the num-
ber of incremental time evolution operators. This decompo-
sition has an error proportional to (�τ )2 and is exact in
the limit �τ → 0. The resulting isolation of e−�τ P̂ allows
for the performance of a discrete Hubbard-Stratonovich (HS)
transformation so that it can be rewritten in quadratic (single
body) form but with the cost of introducing a discrete auxiliary
field with components on each of the space and imaginary
time lattice coordinates. The fermions are then integrated out,
and the HS field is sampled by the Monte Carlo technique.
In the work we report here we choose t�τ = 0.125 so that

the error from the Trotter-Suzuki decomposition is less than,
or comparable to, that from the Monte Carlo sampling. We
therefore report error bars from the latter. More details about
the method are discussed in Ref. [42] and references therein.

Although DQMC is exact, its low temperature application
is restricted to systems with particle-hole or other symme-
tries [43], owing to the minus-sign problem [44,45]. For this
reason, our focus is on half filling, μ = εf = εd = 0, where
the sign problem is absent. Fortunately, this density is of
considerable interest, both because of the strong magnetic
order favored by commensurate filling and by the materials for
which half filling is appropriate (e.g., the undoped parent com-
pounds of the cuprate superconductors). Depleting f orbitals,
i.e., removing them from the lattice, preserves particle-hole
symmetry (PHS). This is true regardless of the number or
pattern of the removed sites, in much the same way that PHS
is present for arbitrary (including position-dependent) choices
of the energy scales t,V , and Uf , as long as the hopping only
connects sites on opposite sublattices of a bipartite lattice.

We concentrate on the following observables: The magnetic
features of the Hamiltonian will be characterized by the real
space spin-spin correlation function,

Cαγ (j) = 〈
S

α, −
j0+jS

γ, +
j0

〉 = 〈
c
α †
j0+j ↓c

α

j0+j ↑c
γ †
j0 ↑c

γ

j0 ↓
〉
, (2)

where the orbital indices are α,γ = d,f . (Later in the paper,
we will use an alternate notation which further distinguishes
the two types of conduction electron orbitals, those with a
partner f orbital and those for which the partner has been
removed.) As the notation suggests, Cαγ (j) is independent of j0
for translationally invariant geometries. The Fourier transform
of Cαγ (j) is the magnetic structure factor,

Sαγ (q) =
∑

j

Cαγ (j) eiq·j. (3)

In addition to these equal time correlation functions, we
also measure appropriate unequal-time quantities including the
magnetic susceptibility,

χαγ (q) =
∑

j

∫ β

0
dτ

〈
S

α, −
j0+j(τ )Sγ, +

j0
(0)

〉
eiq·j . (4)

For χ we will mostly examine the uniform case, q = 0.
Although we have defined both the equal time correlations,
Eq. (2), and susceptibility, Eq. (4), in terms of the xy (+−)
spin components, these are, by symmetry, equivalent to those
in the z direction.

Metal-insulator transitions are characterized via the elec-
tronic compressibility (κ) and the dc conductivity (σdc). The
former is defined as

κ = − 1

ρ2

∂ρ

∂μ
, (5)

where ρ is the electronic density. The conductivity, σdc, is
evaluated as

σdc = β2

π
�xx(q = 0,τ = β/2), (6)

with

�xx(q,τ ) = 〈jx(q,τ )jx(−q,0)〉 , (7)
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where jx(q,τ ) is the q-τ dependent current in the x direc-
tion, the Fourier transform of jx(l) = −i

∑
l tl+x̂,l(c

†
l+x̂,σ cl,σ −

c
†
l,σ cl+x̂,σ ). The assumptions involved in the use of Eq. (6) to

evaluate the conductivity are discussed in Refs. [46,47] and
are tested there for a variety of situations. At this point it is
instructive to mention that κ measures the accommodation of
additional electrons (or holes) into the system, while σdc probes
the effective charge transport throughout the lattice. In view of
this, σdc provides a more stringent criterion for metallicity.

III. SINGLE DEPLETION

An interesting step towards understanding f -orbital de-
pleted systems is to consider an isolated impurity. In fact,
there have been a number of recent studies on the alteration
of the magnetic structure around impurities in heavy fermion
materials and their possible description within the PAM [48–
54]. Hence, we first discuss how depletion of a single f orbital
affects magnetic and spectral properties and compare with the
uniform case of the undepleted PAM. Inclusion of a magnetic
defect breaks translational symmetry. We therefore generalize
Eq. (4) to the local magnetic susceptibility at site i by

χ
αγ

i =
∑
j∈γ

∫ β

0
dτ

〈
S

α, −
i (τ )Sγ ,+

j (0)
〉
, (8)

where the sum runs over all sites j with orbital γ . The total
susceptibility, Eq. (4), is the sum of these local susceptibilities.
χ

αγ

i would be probed experimentally via nuclear magnetic
resonance and, indeed, such site- and orbital-specific NMR has
been used to explore spin and charge patterns in doped heavy
fermion [49,53] and iron-pnictide superconductors [52].

We analyzed a 10 × 10 lattice, using periodic boundary
conditions, with the depleted site defining the origin of the
lattice. Because one of the most interesting aspects of site
removal is the possibility of enhancing magnetism [54], we
fix the hybridization at V/t = 1.2 and the repulsive potential
as Uf /t = 4, so that we are in the spin-singlet phase of the
undepleted PAM [7,10].

Figure 1 presents the behavior of the local susceptibility,
Eq. (8), of the f orbitals as a function of the distance from the
depletion site. At a high temperature, T/t = 0.2 (βt = 5, black
diamonds), the magnetic response is large and positive and
almost homogeneous throughout the lattice. When the temper-
ature is decreased, T/t = 0.10 − 0.05, the local susceptibility
increases on nearest neighbor (NN) sites. This is the opposite
of what happens in the conventional PAM, where, in the singlet
phase at V/t = 1.2, the magnetic susceptibility goes to zero
as a consequence of the spin gap in the ground state. Indeed,
at βt = 20 (red squares), the NN magnetic susceptibility is an
order of magnitude larger than the undepleted PAM (dashed
black line).

On the other hand, as T is lowered, the next-nearest
neighbors (NNN) of the defect exhibit a lower, but negative,
magnetic response, providing evidence of antiferromagnetic
correlations around the depleted site. As the distance from
the depleted site grows, χ

ff

i decays with distance, eventually
approaching the value for the regular PAM. An alternate visu-
alization of the enhancement of antiferromagnetic correlations

0 1 2 3 4 5 6

0

2

4

6

iff

|i|

 t = 5
 t = 10
 t = 16
 t = 20
 t = 20 (reg. PAM)

Uf /t = 4.0
V/t = 1.2

FIG. 1. Local susceptibility of f orbitals as a function of distance
|i| from the ion defect. The dashed black line is the value of the
magnetic susceptibility in the undepleted PAM at βt = 20. Here, and
in all subsequent figures, when not shown, the error bars are smaller
than the symbol size.

is given in Fig. 2, a color contour plot of χ
ff

i . The formation
of a small antiferromagnetic ‘cloud’ around the magnetic
defect is evident. When the hybridization is increased (not
shown) the magnetic response for the NN sites remains high
but is strongly suppressed on sites farther from the impurity.
The characteristic size of the ‘cloud’ decreases as one moves
deeper into the singlet phase. The results of Figs. 1 and 2 are
consistent with DMRG calculations for a single depletion in
the one-dimensional Kondo lattice model (KLM) [55] and with
the behavior of a corresponding model of localized spins; see
Ref. [54].

As noted earlier, the presence of magnetic clouds around
impurities is a characteristic feature of real materials. In the
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FIG. 2. Contour plot of the f -orbital local susceptibilities for
βt = 20. The central black square marks the geometrical position
of the site where the f orbital was depleted.
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FIG. 3. Contour plot of the local f electron density of states,
N

f

i (0), for βt = 20. The black square corresponds to the impurity
location, as in Fig. 2.

heavy fermion CeCo(In1−xCdx)5, for example, an antiferro-
magnetic region appears around Cd impurities, with a size
that can be tuned with pressure [48–51]. The Cd substitution
includes a hole in p orbital,1 thereby locally changing the
hybridization and breaking up the local singlet; the net effect
is the appearance of an effective local moment at the impurity
site, which interacts with its neighbors [50,51].

In this particular situation, a model more appropriate than
that of Eq. (1) is one in which the moment on an impurity site
has an altered hybridization V to the conduction electrons [53].
However, magnetic domains around sites in which the moment
is removed have also been studied [56–58].2

The preceding result is suggestive of the breaking of the
local singlet state, an effect we will see in even more dramatic
form when a collection of f sites is removed. It is also worth
examining the spectral properties of the system. We compute
the local density of states (DOS) by analytic continuation of
the imaginary-time dependent Green’s function, inverting the
integral equation

Gi(j = 0,τ ) =
∫

dω Ni(ω)
e−ωτ

eβω + 1
, (9)

where i denotes the site position, while j is the displacement
between sites where the creation and annihilation operators of
the Green’s function are applied. As discussed in Ref. [59], for
low temperatures the DOS at ω = 0 can be written as

Ni(ω = 0) ≈ −βGi(j = 0,τ = β/2)/π. (10)

1The Cd electronic configuration is [Kr] 5s2 4d10, while that of In
is [Kr] 5s2 4d10 5p1.

2This kind of depletion may be connected with La-doped heavy
fermion materials, such as Ce1−xLaxCoIn5. Since the electronic
configuration of Ce is [Xe] 6s2 4f 1 5d1, while the La configuration is
[Xe] 6s2 5d1, the main effect of La doping is to remove a localized f

electron. Nonetheless, there is no experimental evidence of magnetic
enhancement for La substitution in CeCoIn5.
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FIG. 4. Contour plot of the conduction electron density of states,
Nc

i (0), for βt = 20.

In Fig. 3 we present a contour plot for N
f

i (0) at βt = 20. At
sites far from the magnetic defect, the local DOS vanishes, as
expected in the spin-singlet phase. Near the impurity, there is
a large DOS, supporting the picture of broken singlets around
the defect, in accordance with the local magnetic susceptibility
results, discussed above. As displayed in the contour plot of
Fig. 4, precisely at the impurity site the conduction electron
DOS, Nc

i (0), is large, owing to the absence of a partner f

electron.
To provide an independent check on the validity of Eq. (10),

we performed a direct inversion of Eq. (9), using the maximum
entropy method [60]. The local DOS is displayed in Fig. 5 for
sites at (a) |i| = 1 (nearest neighbors), (b)

√
2 (next-nearest

neighbors), and (c) 4
√

2 far from the magnetic defect. As in

FIG. 5. DOS of sites at distance (a) |i| = 1, (b)
√

2, and (c) 4
√

2
from the depleted site, as well as (d) the regular (undepleted) PAM,
both for βt = 20 and V/t = 1.20. At short distances, the singlet gap
present in the undepleted PAM is partially filled in, so that there is
nonvanishing f spectral weight at ω = 0.
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Figs. 3 and 4, we fixed βt = 20. We also present in Fig. 5(d)
the DOS of the undepleted PAM, at the same temperature and
hybridization. Notice that forV/t = 1.20, the undepleted PAM
is in the spin-singlet phase and has a gap in the DOS. Although
the charge gap of the homogeneous system is recovered at large
|i|, the results suggest that a single depletion in the spin singlet
phase of the PAM creates nonvanishing spectral weight in the
f sites around the defect (and a localized state in the unpaired
d orbital). Similar analyses within a mean-field approach were
performed in Refs. [61] and [62], where a gain is also observed
in spectral weight owing to f -orbital depletion.

To summarize: Our results provide evidence of enhance-
ment of short range magnetic correlations and local density of
states, which we interpret as arising from the breaking of spin
singlets near the impurity [54,55,63,64]. We now turn to the
main theme of this paper, namely what happens with a regular
collection of depleted sites, and specifically, whether the local
magnetic regions coalesce into long range order. Such prob-
lems were first addressed in Refs. [65] and [66] for the PAM
and KLM, respectively, within a mean-field approach. Recent
mean-field results for the PAM, presented in Ref. [36], also pro-
vide evidence of a ferromagnetic ground state. Similarly, unbi-
ased methods for an analogous spin model, namely the bilayer
Heisenberg model (Ref. [54]), shows that, indeed, the depletion
of spins induces an AFM ground state. As we shall see in the
next section, magnetic long range order indeed occurs, even
deep in what was previously the singlet phase of the undepleted
model (large d-f hybridization). However, as presented below,
the system still has a “memory” of the old critical point.

IV. HALF DEPLETION

Our previous results suggest that if the number of non-
magnetic defects increases, the magnetic correlations can be
enhanced, and thus the ground state may exhibit magnetic long
range order even if the undepleted model is in the singlet phase.
Here we explore the case of depletion of half of the f orbitals,
in the checkerboard pattern of Fig. 6(a). The possibility of
a magnetic ground state in such a geometry is supported by
exact results, such as Tsunetsugu’s theorem [67] for the KLM
and Lieb’s theorem for the Hubbard model [25,68,69]. The
former is particularly relevant in the present case, owing to the
close relationship between the PAM and the KLM. Tsunetsugu
showed that the ground state of the KLM on a bipartite
lattice and at half filling has total spin S = |NA − NB|/2,
where NA and NB are the number of sites in sublattices
A and B, respectively. In this theorem, the localized spins
are also included when counting the number of sites on
each sublattice, with their labels (i.e., belonging to A or B)
depending on the sign of the Kondo interaction. There is no
assumption of translational symmetry in this result: Missing
sites can be randomly located. Although this theorem was
proved for the KLM, one might expect a similar behavior in
the closely-related PAM. If so, the total spin of the PAM in
the half depleted lattice of Fig. 6(a) should be finite, i.e., a
ferromagnetic ground state. Our goal here is to confirm this
conjecture within unbiased methods, and, more importantly,
to quantify the details of the individual orbital contributions
to magnetism as a function of the hybridization between the

f

d0

d1

(a)

(b)

-π

π
0

-π
π0

E(k)

0

FIG. 6. (a) The lattice geometry for the regularly half depleted
PAM. The unit cell is composed by the sites d0, d1, and f . Here we
depict a lattice with Ncells = 2 × 22. (b) The band structure in the
noninteracting case for V �= 0.

conduction and localized electrons, which is beyond the scope
of the theorem.

Let us first introduce a notation which simplifies the
identification of different sites/orbitals. Since we depleted all
f orbitals from one sublattice, we have two different types
of d orbitals, d0 and d1: The former (latter) corresponds to
d orbitals without (with) hybridization with f orbitals, as
displayed in Fig. 6(a). In addition, the unit cell for this geometry
is composed of three sites, one of each type, with unit vectors
a1 = a(1,1) and a2 = a(1, − 1). Herea is the distance between
nearest d0 and d1 sites. We choose a = 0.5 so that the distance
between neighboring d0 (or d1) sites is 1. Finally, for technical
reasons we performed our simulations on an L × L square
geometry, with the primitive cell having twice the size of the
unit cell, i.e., containing six sites; thus the number of unit cells
is Ncells = 2 × L2.

We start by summarizing the noninteracting band structure:
The three-site unit cell gives rise to three energy bands, with
the middle one being flat (dispersionless), as is also the case
for the Lieb lattice. However, unlike the Lieb lattice for which
the flat band touches the dispersing bands above and below
it, here the middle band is disconnected from the lower and
upper bands for any positive value of the d-f hybridization
V , as displayed in Fig. 6(b); an analogous instance for the
case of a honeycomb lattice is illustrated in Ref. [39]. As V

increases, the gap between the middle and upper/lower bands
widens, though without changing the dispersionless character
of the middle band. Then, the system is a band insulator at
one-third and two-thirds filling. Nevertheless, at half filling,
which is our focus here, it is similar to the Lieb case, with a
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T/t  0.023

Ncell= 2 52

FIG. 7. Local moments on the three types of sites as functions of
hybridization at a low temperature.

partially filled flat band which, as we shall see, gives rise to
bulk ferromagnetism when interactions are turned on [70].

We fix Uf /t = 4 and vary the strength of the f -d hy-
bridization V/t . Figure 7 shows the local moments, 〈(m̂z

i )2〉 =
〈(n̂i↑ − n̂i↓)2〉 on different types of sites. When V/t ∼ 0.8,
within the AF phase of the undepleted PAM, 〈m2

f 〉 (i.e.,
the local moment of the undeleted f sites) is large, due to
the suppression of the double occupancy 〈n↑n↓〉 by Uf �=
0. By contrast, the conduction electron moments 〈m2

d0
〉 and

〈m2
d1

〉 are close to the half-filled noninteracting value 〈m2〉 =
〈n↑ + n↓〉 − 2〈n↑n↓〉 = 〈n↑ + n↓〉 − 2〈n↑〉 〈n↓〉 = 1/2. As V

increases, the hybridization between d1 and f sites leads
to a reduction in 〈m2

f 〉. The local moment of the d0 sites
increases with V/t much more than that of the d1 sites, which
remains roughly constant. This is somewhat surprising since
V connects d1 sites directly to f sites but does not hybridize
the d0 sites at all, and, more importantly, d sites have U = 0.
A similar behavior was recently observed [71] in the Hubbard
model on a 2D superlattice with alternating rows of correlated
and uncorrelated sites of different widths.

Further insight into the magnetic properties of the system
can be gained by investigating nonlocal properties of the real
space spin-spin correlation function, Eq. (2). We present, in
Fig. 8, Cαγ (r) for nearest pairs of sites along the x (or y)
direction, as a function of the hybridization V/t . The sign of
the correlations Cαγ (r) is always positive for {αγ }={d0d0},
{d1d1}, {ff }, and {d0f } and negative for {d0d1} and {d1f }
even at larger r (not shown). This is consistent with Shen’s
theorem [72] for the KLM, which asserts that, on bipartite
lattices, Cαγ (r) is always positive for sites on the same
sublattice and always negative for sites on different sublattices.

In the undepleted case, short range spin correlations decline
in magnitude upon crossing the AF-singlet quantum critical
point at Vc ∼ t ; e.g., see Ref. [10]. Figure 8, which resolves
the spin correlations by orbital type, is useful in isolating the
origin of the long range order which we will show to exist later
in this section. In particular, as seen in the figure, some of the
short range correlations grow as V/t increases, contrary to the

1E-3
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C
(r
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 Cff(1)

Uf /t=4.0
T/t 0.023

Ncell= 2 52

(a)

C
(r

)

V/t

 Cd1f(1)
 Cd0d1(0.5)
 Cd0f(0.5)

(b)

FIG. 8. Spin-spin correlation functions for nearest pair of sites
in the x (or y) direction: (a) cd1d1 (1), cd0d0 (1), cff (1), (b) cd0d1 (0.5),
cd1f (1), and cd0f (0.5). Only correlations between pairs of sites on
different sublattices, that is d0d1 and d1f , are negative (AF).

behavior in the regular PAM. For small hybridization, Cff (1)
dominates the other correlations; it is almost two orders of mag-
nitude larger than Cd0d0 (1), for example. However, Cd0d0 (1) is
strongly enhanced as V/t increases, while Cff (1) decreases.
By the time V/t ∼ 2.4 they are roughly equal. Meanwhile,
Cd1d1 (1) remains small for all V . These results suggest that
d0 sites play an important role in the magnetic correlations in
the ground state. Figure 8 also indicates that antiferromagnetic
correlations are present between neighboring d0 and d1 sites
[Cd0d1 (0.5)], and d1 and f sites [Cd1f (1)]: These decrease
slowly with V . Finally, Cd0f (0.5) exhibits a large and almost
constant value, indicating it too contributes substantially to
ground state magnetism.

According to Eq. (3), the total ferromagnetic spin structure
factor normalized by the number of sites is defined as S(0) =
1
3

∑
αγ Sαγ , with

Sαγ = 1

Ncells

∑
ij

〈
S

z(α)
i S

z(γ )
j

〉
. (11)

As before, α and γ label the sites d0, d1, and f , and the sums
over i and j are restricted to their positions. Figure 9 displays
the behavior of S(0) at fixed V/t = 1.6 for different lattice
sizes. At high temperatures, where spin correlations are short
ranged, this quantity is independent of the size N of the system.
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FIG. 9. Homogeneous spin structure factor S(q = 0) versus tem-
perature for V/t = 1.6 and Uf /t = 4.0.

However, when the ground state exhibits long range order, the
sum over all sites in Eq. (3) becomes dependent on N . More
specifically, in Fig. 9, curves with different sizes separate at
T/t ≈ 0.05, the temperature at which the correlation length ξ

becomes comparable to the linear lattice size. The temperature,
which is set by the effective exchange coupling Jeff , where
ξ (T ) ∼ L, decreases for larger V/t (not shown). As a conse-
quence, simulations for this parameter regime have become a
challenging issue for DQMC. The dependence of Jeff on V has
been estimated within perturbation theory [37].

The order parameter is obtained by carrying out a finite-size
scaling analysis of the spin structure factor. The saturated (large
β) values of S(0), for different lattice sizes are fit to a linear
spin-wave scaling [73],

S(0)

Ncell
= m2

tot + a√
Ncell

, (12)

with m2
tot being the extrapolated global ferromagnetic order

parameter; see Fig. 10. This result confirms the existence
of long range ferromagnetism in the ground state, even for
V/t more than twice Vc/t ∼ 1 where the system becomes a
spin liquid in the undepleted case. Figure 11(a) presents the
behavior of mtot (squares; black solid line) as a function of
V/t . Interestingly, the ferromagnetic order parameter is almost
independent of the hybridization over the range shown.

The analysis of the short range spin correlations for different
orbitals in Figs. 7 and 8 already provided some insight into
where magnetism “lives.” Then, we proceed by investigat-
ing the individual contributions to magnetism, by means
of Eq. (11). However, as discussed above, the correlation
functions of d0-d1 and d1-f sites are always negative, thus we
define SAF

αγ = −Sαγ for these pairs of sites; this corresponds
to taking their antiferromagnetic contribution. By the same
token, we define SF

αγ = Sαγ for those pairs of sites in which
their correlation functions are always ferromagnetic. As with
the global structure factor, we perform a linear scaling for each

0.00 0.05 0.10 0.15 0.20
0.00

0.02

0.04

0.06

0.08

 V/t=0.8
 V/t=1.0
 V/t=1.2
 V/t=1.6
 V/t=2.0
 V/t=2.4

S
(q

=0
) /

 N
ce

ll

Ncell
-1/2

Uf /t = 4.0

FIG. 10. Finite-size scaling of the total ferromagnetic structure
factor. A nonzero extrapolation to N

−1/2
cell → 0 indicates the pres-

ence of long range order for all the V/t values shown. Finite size
corrections are largest for small V/t and for large V/t ; the effective
exchange coupling Jeff becomes small in both limits. See text.

channel,3 i.e., SF (AF )
αγ /Ncells → (mF (AF )

αγ )2, when 1/
√

Ncells →
0. These extrapolated values are displayed in Fig. 11. We omit
mF

d1d1
, which is small for the entire range of V/t examined.

As shown in Fig. 11(a), at small hybridization the largest
contribution to the total magnetism comes from the f sites,
while mF

d0d0
is negligible. However, as V/t increases, a

crossover between f and d0-site contributions takes place, with
the suppression of the former and the enhancement of the latter,
while the total magnetism is kept constant. The contributions
from different channels are exhibited in Fig. 11(b), with mAF

d0f

being the largest over the entire range of V/t we analyzed. This
should not be surprising for small hybridization (i.e., V/t < 1),
since RKKY leads to long-range spin correlations between d

and f orbitals. However, these strong spin correlations even
for large V/t (>1) are the key for supporting the formation
of a magnetic ground state. In this region, attempts to screen
the f electrons reduce their contribution to magnetism, but,
owing to the large antiferromagnetic correlation between d0

and f sites, the localized d0 electrons can indirectly interact
with each other, leading to long range order in their sublattice.
The same assumption can be inferred from mAF

d0d1
. A similar

crossover (from f to d0 magnetism) is observed in a single
spin depleted KLM in a one-dimensional chain [55], as well
as in higher dimensions within dynamical mean-field theory
(DMFT) [36,38]. Unlike DMFT, the DQMC approach includes
nonlocal correlations thus providing additional insight into the
crossover.

3The individual contributions Sαγ of channels {αγ }={d0d1},
{d0f }, and {d1f } are divided by two before we perform the
scaling. It assures a site normalized order parameter for all individual
contributions.
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FIG. 11. (a) The order parameter mF
tot and its individual contribu-

tions mF
d0d0

and mF
ff as well as (b) mAF

d0d1
, mAF

d1f , and mF
d0f as functions

of V/t . mF
d1d1

is zero for all values of V/t . The curves are guides to
the eye.

Interestingly, the order parameter on conduction electron
sites without an f partner, mF

d0d0
, becomes non-negligible at

Vc/t ≈ 1, the value of the QCP for the undepleted PAM, for
Uf /t = 4 [7,10]. In this situation Vc/t is the characteristic
energy scale to form singlets, whose formation is prevented on
the depleted lattice by the presence of unpaired d electrons.
One should notice that, not coincidentally, the AF mAF

d0d1

contribution to magnetism starts being relevant at Vc/t as well.
As discussed above, since d0-d0 spin correlations are also me-
diated by d1 sites, one thus expects long range spin correlations
in the d0-d1 channel in order for mF

d0d0
to be non-negligible. On

the other hand, for large hybridization, namely V/t � 1, mAF
d1f

is suppressed, i.e., d1-f spin correlations start becoming short
ranged, as a symptom of the attempts to form singlets. These
results strongly suggest that, despite the fact that magnetism
remains present, there is a “memory” of the undepleted PAM
QCP. In other words, the d0 electrons start being localized and,
therefore, interacting with each other when hybridization is
larger than the energy scale for the formation of singlets in the
undepleted PAM. Thus, this crossover will change its position

0.0

0.1

0.2

0.0

2.0

4.0

0.00 0.05 0.10 0.15 0.20
0.0

0.1

0.2

d 1

(a)

Uf /t=4
(b)

 

d 0

 V/t=1.2
 V/t=2.0

(c)

f

T/t
FIG. 12. The orbital resolved compressibilities as functions of

T/t at (a) d1, (b) d0, and (c) f sites. On the f sites where Uf is
nonzero, and the conduction sites d1 to which they are hybridized
by V , the compressibility vanishes as T → 0. However on the d0

sites where only the conduction orbital remains following depletion,
κ remains large at low T .

according to the Vc(Uf ).4 Finally, we should mention that the
results for the dynamical quantities in the single depletion case
(see the previous section) give further insights into the nature
of this long-ranged ferrimagnetic state: As the number of d0

sites (or impurities) increases, the broken singlets around them
may form larger clusters, hence leading to long ranged spin
correlations; the localized electrons ond0 sites behave similarly
to spins with a small magnetic moment (due to Ud = 0) but
also contributing to magnetism.

V. TRANSPORT PROPERTIES

We conclude with a discussion of transport properties. We
first examine the electronic compressibilities for each individ-
ual orbital κα , which exhibit an interesting behavior (Fig. 12).
κd1 and κf , the compressibilities on the two sites connected by
V , fall as the temperature is lowered for both V/t = 1.2 and
V/t = 2.0. On the other hand, the d0-site compressibility κd0

is much larger and grows as T/t decreases. Such a feature of

4Reference [10] presents an accurate determination of the unde-
pleted PAM QCPs, Vc(Uf ).
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FIG. 13. Conductivity σdc as a function of temperature T at
V/t = 0.8, 1.2, and 2.0. σdc turns sharply downward at the same tem-
perature T ∼ 0.05t where the compressibility on the d1 and d0 sites
also decreases more rapidly (Fig. 12) and the ferromagnetic structure
factor signals the beginning of large spin correlation lengths (Fig. 9).

d0 sites is deeply connected with the formation of localized
electronic states on them, as discussed in Sec. III. Thus, one
should expect a large density of states at the Fermi level due
to the absence of local repulsion on d0 sites but with these
available states belonging to them.

Although the system is compressible, as evidenced by the
data in Fig. 12, it is an insulator. The metallicity of a system
should be determined not only by the available states at Fermi
level but also by its current-current correlation functions and,
ultimately, by its conductivity, Eq. (6). As displayed in Fig. 13,
the temperature dependence of the conductivity σdc indicates
an insulating behavior. This is similar to what happens for
the single band Hubbard model on a square lattice, where
σdc also vanishes for the entire range of U/t , as the system
crosses over from a Slater to a Mott insulator; the same also
occurs for the entire range of V/t for the undepleted PAM,
whose QCP separates an AF insulator from a singlet phase
with a hybridization gap. However, here the emergence of
this insulating state is related to the lack of available states
on nearest-neighbor d0 sites, due to the tendency of d1-f
singlet formation. That is, although one can accommodate new
electrons on d0 sites, their hopping throughout the lattice is
hindered. We believe this behavior is generic to the depleted
PAM as well: Despite being compressible, the entire phase
diagram at half filled corresponds to an insulating system.

It is worth mentioning that a compressible insulator (or
a gapless insulator) has already been predicted to occur in
other systems, such as in one-dimensional Hubbard superlat-
tices [74]. In this case, a periodic arrangement of L1 nonin-
teracting sites and L2 interacting sites leads to a compressible
insulator ground state, since one can add charge in the noninter-
acting sites without energy cost. By the same token, Ud = 0 in
the depleted PAM, which in addition to the large local density
of states on the d0 sites, allows one to accommodate a second
electron on them, creating a compressible (insulator) state.

VI. CONCLUSIONS

In this paper we have studied the properties of a two-
dimensional periodic Anderson model with (i) a single local-
ized f -site depletion and (ii) one half of the f sites regularly
removed. In the former case, by examining the behavior of the
local magnetic susceptibility, we noticed an enhancement of
spin-spin correlations, with the creation of an antiferromag-
netic ‘cloud’ around the defect. This enhancement occurs due
to the breakup of singlets around the impurity, owing to the
exchange interaction between the localized f electrons and the
unpaired d electron. We have also investigated spectral proper-
ties, such as the local density of states. We observed that a single
depletion creates a large spectral weight at the Fermi level on
the unpaired d site, corresponding to a localized state on it.

The latter case, i.e., the one half f -sites depletion, leads
to some unique properties. First, it has long-range ferrimag-
netic order, consistent with Tsunetsugu’s theorem [67] for
the KLM (and ultimately to Lieb’s theorem [25] for the
Hubbard Hamiltonian) concerning the total spin in the ground
state of a bipartite lattice with unequal numbers of sublattice
sites. Analyses of the spin correlations in different channels
indicate that at small f -d hybridization, V , the magnetic
order is dominated by the remaining f sites, but at large V

there is a crossover: The magnetic order becomes strongly
driven by those conduction sites which have lost their local
orbital partners. It is a remarkable instance of magnetism
from noninteracting orbitals (Ud = 0). Overall, although the
total ferromagnetic order parameter is surprisingly constant,
its individual channel contributions provide evidence that the
crossover between f and d magnetism occurs at the AF-singlet
QCP of the undepleted PAM.

The emergence of this ferromagnetic state can be un-
derstood via a strong coupling (i.e., U,V � t) analysis, as
discussed in Ref. [37]. With the aid of fourth-order perturbation
theory, the system can be mapped onto a Heisenberg-like
Hamiltonian, in which the localized electrons on d0 sites
interact with each other mediated by intervening d1-f singlets,
leading to a ferromagnetic effective exchange coupling [of
typical magnitude Jeff ∼ t4(U 3 + 48UV 2)/24V 6)].

Two additional features stand out in the transport properties.
First, the system is compressible at half filling. This cannot be
attributed simply to the presence of conduction sites at which
Ud = 0, since these are present in the undepleted PAM, for
which κ = 0. Thus κ �= 0 must be attributed to the depletion
and, in particular, to the mismatch of conduction and local spin
orbitals which prevents all sites from participating in singlet
formation. Related issues have been raised in the reversed sit-
uation where the number of local orbitals exceeds the number
of conduction electrons available for screening [75,76]. Sec-
ond, despite this nonvanishing compressibility, the system is
insulating; the conductivity σdc goes to zero as the temperature
is lowered.

Phases where insulating behavior and nonzero compress-
ibility are partnered together constitute a prominent feature
of the physics of the boson Hubbard model [77]. There, the
introduction of disorder results in a new ‘Bose-glass’ phase,
which has zero superfluid density, like the Mott insulator
(MI) of the clean model, but which is compressible, unlike
the MI [78]. In the depleted PAM studied here we have
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demonstrated a fermionic analog, a phase which is insulating
like the original AF and singlet regimes of the undepleted PAM
but has nonzero κ . This compressible ferrimagnet originates
from depletion rather than from disorder.
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