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The periodic Anderson model is widely studied to understand strong correlation physics and especially the
competition of antiferromagnetism and singlet formation. In this paper we extend quantum Monte Carlo work
on lattices with uniform numbers of neighbors to geometries in which the conduction electron sites can have
variable coordination z. This situation is relevant both to recently discovered magnetic quasicrystals and also
to magnetism in doped heavy fermion systems. Our key results are the presence of antiferromagnetic order at
weak interorbital hybridization Vf d , and a delay in singlet formation to larger values of Vf d on sites with larger
z. The staggered magnetization tends to be larger on sites with higher z, providing insight into the behavior to be
expected in crown, dice, and CaVO lattices.
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I. INTRODUCTION

The single band Hubbard Hamiltonian [1–4] captures
several of the most fundamental consequences of electron-
electron interactions in solids, namely, magnetic order and
the Mott metal-insulator transition. Multiband Hamiltonians
like the periodic Anderson model (PAM) [5,6] examine what
happens when two species of electrons, one delocalized
“conduction” band (often d), and another localized band (often
f ), are present. Here a central effect is the competition between
singlet formation [7], when the conduction and localized
electrons are strongly hybridized, and ordering of the local
moments mediated indirectly through the Ruderman-Kittel-
Kasuya-Yosida interaction [8–11]. In heavy fermion materi-
als [12,13], this competition is believed to explain different
low-temperature phases, e.g., nonmagnetic CeAl3 where the f

moments are screened by the conduction electrons, and CeAl2
which becomes antiferromagnetic (AF) at low temperatures.

Quantum Monte Carlo (QMC) studies of the PAM have
explored some of this physics, in one [14,15], two [16], and
three dimensions [17]. The focus has been on bipartite lattices
which, at half-filling, host AF order without frustration and are
also free of the fermion sign problem [18,19]. QMC in infinite
dimensions [20] complements work in finite d by allowing
simulations at very low temperature, at or even well below
the Kondo scale, at the expense of some of the knowledge of
correlations in space.

There is interest in understanding the magnetic correlations
in more general geometries. One such modification allows
for intersite, rather than on-site, hybridization between con-
duction and local orbitals and hence metallic behavior in the
absence of interactions [21]. Another motivation is provided
by chemical substitution in heavy fermion materials, either
by the replacement of some of the local moment atoms by
nonmagnetic ones, as in (Ce,La)CoIn5 [22], or by changes to
the conduction orbitals, as in the alloying of Cd onto In sites
in CeCo(In,Cd)5 [23]. In the latter situation, Vf d is reduced
locally, and AF droplets can form around the impurity sites.

A second motivation is the recent observation of a quantum
critical state in magnetic quasicrystals [24,25]. In these Au-
Al-Yb alloys (Au51Al34Yb15), measurements of the magnetic

susceptibility χ and specific heat C diverge as T → 0. This
non-Fermi-liquid (NFL) behavior is associated with strongly
correlated 4f Yb electrons. These two sets of materials share
a common feature which is that the coordination number of
the different atoms is no longer spatially uniform. The effects
of these unique local environments can be probed with nuclear
magnetic resonance [26].

The NFL behavior of Au-Al-Yb alloys has recently been
studied by solving the U = ∞ Anderson impurity model for
a single local moment coupled to conduction electrons in a
quasicrystal approximant geometry [27]. The crucial result is
that singular responses in χ and C occur as a consequence of a
broad (power-law) distribution of Kondo temperatures which
delays screening of a large fraction of the magnetic moments
until very low temperatures.

In this paper we study the PAM in two different geometries:
the Lieb lattice and a two-dimensional (2D) “Ammann-
Beenker” tiling [28,29]. Quasicrystalline approximates [30]
for Au51Al34Yb15 are in three dimensions; the quasiperiodic
Ammann-Beenker tiling is a more tractable 2D alternative for
QMC, which is limited in the number of sites which can be
simulated.

Our goal here is to explore the nature of magnetic corre-
lations as a function of f -d hybridization, and specifically,
to understand the competition of antiferromagnetic order
and singlet formation in geometries where the coordination
number of different sites in the lattice is nonuniform. Our
work extends that of [27] by examining a dense array of
local orbitals and also by including the effect of finite Uf .
We begin with the Lieb lattice, because it contains two
separate coordination numbers, z = 2,4, while still retaining
very simple lattice periodicity. We then turn to the more
complicated quasicrystal approximant structure. We do not at
present address the anomalous NFL behavior of the magnetic
susceptibility, since those phenomena appear to be associated
only with the quasicrystal itself, and not its approximant [23].

The magnetic properties of quantum antiferromagnets in
geometries which have a variable coordination number (qua-
sicrystal, crown, and dice lattices) have also been studied in
the context of the spin-1/2 Heisenberg Hamiltonian [31–34].
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FIG. 1. The Lieb lattice geometry under consideration in this
paper. (Cluster shown has 4 × 4 unit cells with 48 sites). Each site
contains both a conduction (d) orbital (circles) and a localized (f )
orbital (squares), so that there is a total of 96 sites/orbitals. Horizontal
and vertical lines correspond to the d-d hopping t . We use periodic
boundary conditions (PBCs). There are two possible conduction
orbital coordinations, z = 2,4. The local f orbitals are connected to
the d orbital on the same site by hybridization Vf d (diagonal lines).

The general trend is to a reduction in order (e.g., the staggered
magnetization) on sites with larger z. On the other hand, in
the case of regular geometries with uniform z, the ordered
moment increases from the honeycomb and CaVO (z = 3) to
square (z = 4) lattices [35]. We observe the latter trend here:
spin-spin correlations grow with z. We will comment on this
further in our conclusions.

Similar issues of magnetic order in quasicrystal lattices
have also been explored in classical models. Ising spins
coupled by Ruderman-Kittel-Kasuya-Yosida interactions [36]
exhibit the somewhat surprising result of a low-temperature
phase with long-range order, as opposed to glassy behavior.
As in the quantum cases mentioned above, and studied in
our work below, the magnetism is strongly dependent on
the local environment. Meanwhile, the magnetic order of
classical Heisenberg spins on a quasicrystal lattice is explored
in [37].

II. MODEL AND METHODS

The PAM is a tight-binding Hamiltonian for which each
spatial site contains both an extended and a localized orbital,

H = −t
∑
〈ij〉,σ

(d†
iσ djσ + d

†
jσ diσ ) − Vf d

∑
iσ

(d†
iσ fiσ + f

†
iσ diσ )

+Uf

∑
i

(
n

f

i↑ − 1

2

)(
n

f

i↓ − 1

2

)
. (1)

Here t is the hybridization between conduction orbitals with
creation (destruction) operators d

†
iσ (diσ ) on nearest-neighbor

sites 〈ij 〉. In this paper we consider the two conduction electron
geometries shown in Figs. 1 and 2 corresponding to “Lieb” and

FIG. 2. Top (bottom): Approximants to the Au51Al34Yb15 crys-
talline lattice for N = 41(239) sites. In each case, sites shown contain
both a conduction (d) orbital and a localized (f ) orbital. Because of
the more complex (irregular) structure, we show only the conduction
sites (circles) explicitly. There is a partner localized site (not shown)
for each, the analogs of the squares in Fig. 1. Lines correspond to the
d-d hopping t . The local f orbitals are connected to the d orbital on
the same site by hybridization Vf d . For this geometry we use open
boundary conditions (OBCs) to avoid frustration. The conduction
electron sites range in coordination from z = 1 to z = 8. The use of
two colors for the sites emphasizes that, despite its complexity, the
geometry is still bipartite.

“quasicrystal” lattices, respectively. Each site of these lattices
also contains a localized orbital, and creation (destruction) op-
erators f

†
iσ (fiσ ). Uf is the on-site interaction between spin-up

and spin-down electrons on the localized orbital, and Vf d is the
conduction-localized orbital hybridization. Both geometries
of Figs. 1 and 2 are bipartite. In H we have written the
interaction term, in “particle-hole” symmetric form, and set the
site energy difference between f and d orbitals to zero, so that
the lattice is half-filled for all temperatures T and Hamiltonian
parameters t,Uf ,Vf d . Half-filling optimizes the tendency for
AF correlations, and also allows determinant Quantum Monte
Carlo (DQMC) simulations at low temperature since the sign
problem [18] is absent.
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FIG. 3. DOS (top) and band structure (bottom) of the PAM on
a Lieb lattice. Here t = 1 and Vf d = 1. The two completely flat
bands at E = ±1 give rise to δ function spikes in D(E) which are
indicated by dashed vertical lines). D(E = 0) vanishes: the system is a
band insulator at half-filling. The DOS for the N = 239 quasicrystal
approximant is also shown in the top panel. As is the case for the
Lieb lattice PAM, the quasicrystal PAM also has a hybridization gap
at E = 0. The single band case is metallic [27,34].

Figure 3 shows the density of states and band structure of
the PAM on a Lieb lattice for t = 1 and Vf d = 1. There are
six bands corresponding to the six sites (three conduction and
three localized) per unit cell. The lattice is bipartite with four
of the six sites on one sublattice and two on the other. Hence, in
accordance with Lieb’s theorem [38] there are two flat bands
(at E = ±1). As in the case of the PAM on a square lattice with
on-site hybridization, the half-filled lattice is a band insulator in
the noninteracting limit. However, by comparing calculations
for on-site and intersite Vf d , the latter being metallic at half-
filling, it has been shown that many properties of the PAM
when Uf /t � 4 are insensitive to the presence of a Uf /t = 0
band gap [21].

The magnetic properties of the PAM are characterized by
intra- and interorbital spin-spin correlations,

czz′
ff (r) = 〈f †

i+r↓fi+r↑f
†
i↑fi↓〉,

czz′
dd (r) = 〈d†

i+r↓di+r↑d
†
i↑di↓〉,

czz′
f d (r) = 〈f †

i+r↓fi+r↑d
†
i↑di↓〉. (2)

Here the superscripts z,z′ refer to the coordination number
of the conduction orbital on site i and i + r , respectively.

This separation allows us to isolate the effects of the number
of neighbors on the spin correlations [39]. We focus here on
czz′
ff (r) which measures intersite magnetic correlations between

the local electrons, and czz
f d (r = 0), the singlet correlator

between local and conduction electrons on the same site. The
spin-spin correlations are translationally invariant for uniform
geometries and periodic boundary conditions, but depend more
generally on both i and r in irregular lattices.

We also measure the structure factor,

Sz
ff =

∑
r

∑
z′

czz′
ff (r)(−1)r ,

(3)
S tot

ff =
∑

r

∑
zz′

gzz′
czz′
ff (r)(−1)r ,

which sums the spin-spin correlations to all distances r from
sites i with a given z. The staggered phase factor (−1)r takes
the value ±1 on the two sublattices of the bipartite geometry
and hence measures AF order. The z-resolved contributions
to the total structure factor S tot

ff are weighted by the fractions

of sites in the lattice with a given coordination gzz′
. In the

singlet phase, the spin correlations decay exponentially with
separation r and S tot

ff gets contributions only from a small
number r < ξ of local correlations. It becomes temperature
independent below a relatively high T set by the singlet energy
scale. In an ordered phase, on the other hand, S tot

ff will depend
on temperature down to much lower T as the correlation length
ξ diverges. Thus a T dependence of S tot

ff can be used as an initial
indicator of AF order.

To determine the possibility of long-range order in the
ground state, we follow the seminal analysis of Hirsch and
Tang [40] in their study of the two-dimensional Hubbard
model. The essence of the procedure is the observation
that the correlation length ξ (T ) diverges as T → 0, so that
if one lowers T sufficiently one can satisfy the condition
ξ 	 L: the correlation length is much larger than the linear
lattice size L. The required T will, of course, decrease as L

increases. If one does this for a collection of L, one has a
set of measurements which is in the ground state for each
L. These results can then be extrapolated to L = ∞ to infer
the ground-state properties in the thermodynamic limit. As
we shall discuss, a challenge which makes the PAM more
difficult than the single band Hubbard model is the smallness
of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
for weak interorbital hybridization Vf d , which necessitates a
very large β.

Our computational approach is DQMC [41,42]. This
method allows the solution of interacting tight-binding Hamil-
tionians like the PAM through an exact mapping onto a
problem of noninteracting particles moving in a space and
(imaginary) time dependent auxiliary field. This field is
sampled stochastically to obtain the expectation values of
different correlation functions. The update moves require the
nonlocal computation of the fermion Green’s function, which
is also the quantity needed to measure equal time observables
including the energy, double occupation, and spin correlations.
The algorithm involves matrix operations and scales as the
cube of the product of the number of spatial lattice sites and
the number of orbitals. In certain special situations, including
the PAM on the geometries studied here, the sampling is free of
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the sign problem [18] so that the simulation may be conducted
on large lattices (here several hundreds of spatial sites) at low
temperature (here T/t � 1/30).

III. PAM ON THE LIEB LATTICE

We begin with the Lieb lattice which has 2N/3 sites of
coordination number z = 2 and N/3 sites with z = 4. Figure 4
shows czz′

ff (r) for Vf d = 0.8 and Vf d = 1.3. In the former
case, the correlation function alternates between positive and
negative values, with a correlation length which exceeds the
linear lattice size, as is characteristic of an AF phase. r = 1
corresponds to the separation between unit cells, so that integer
values of r are between sites with z′ = z (and hence the same
sublattice) and half-integer values have z′ 
= z (and hence
occupy different sublattices). The AF correlations are evident
in both z = 2 and z = 4, although they are larger for higher
coordination numbers. This reflects the collective nature of the
AF order, which is more robust as the number of neighbors
grows. Actually, because theA andB sublattices have different
numbers, the ordered phase is ferrimagnetic [38], with N↑ 
=
N↓ in addition to the staggered pattern seen in the figure.
For Vf d = 1.3, on the other hand, czz′

ff (r) falls rapidly to zero,
indicative of a singlet phase.

The AF and singlet regimes can also be distinguished
by czz

f d (r = 0), as shown in Fig. 5. (Here since r = 0 the
coordination numbers z′ = z.) czz

f d (r = 0) vanishes for Vf d =
0 where the localized and conduction fermions are decoupled,
and saturates at a large value for Vf d → ∞. For the sites with
larger coordination number z′ = z = 4, singlet correlations
develop at larger Vf d than for sites with z′ = z = 2. As might
be expected for a local quantity, the singlet correlator for the
z = 4 sites matches quite well to those on a square lattice.
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0

0.1

c ffzz
’ (r

)

Vfd=0.8 (AF phase)

Vfd=1.3 (singlet phase)

0 1 2 3
r

z=2 z=4

FIG. 4. Spin-spin correlation function czz′
ff (r) as a function of r

for the half-filled Lieb lattice with Uf = 4t and β = 30. r = 1 is the
unit cell size: integer r correspond to z′ = z and half-integer values to
z′ 
= z. The red (blue) symbols show Vf d = 0.8t (1.3t), respectively.
For Vf d = 0.8t there is AF order to large r , while for Vf d = 1.3,
czz′
ff (r) decays rapidly to zero. In the AF regime, larger z increases

czz′
ff (r). Data depicted by x (Vf d = 0.8) and ∗ (Vf d = 1.3) are for

the square lattice. r = 0.5 is for nearest-neighbors, and r = 1.0 for
next-nearest neighbors.
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FIG. 5. Local singlet correlator czz′
f d (r = 0) for the half-filled Lieb

lattice with Uf = 4t . The singlet correlations develop more rapidly
for z = 2 than for z = 4 since for smaller coordination numbers
the competition with AF order is reduced. Data for different β

(β = 15,20) as well as different system sizes (4 × 4 and 5 × 5)
overlap: this short-range correlation function converges rather quickly
as T is lowered and N is increased. Vertical dashed lines at Vf d =
0.8,1.3 demark the values used for the real space spin correlation
data of Fig. 4. Square lattice data coincide well with Lieb sites
with z = 4.

(The 4 × 4 square lattice is anomalous because of its unusual
additional symmetries, and is not shown.)

In Fig. 6 we turn to the AF structure factor, Eq. (3),
which sums the spin correlations on the localized orbitals
over the whole lattice. In the singlet phase, czz′

ff (r) is short
ranged and temperature independent, achieving its ground-
state value at T ∼ V 2

f d/Uf . In the AF phase, on the other

0 0.5 1 1.5
Vfd

0
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2
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S
ffto

t

4x4 β=30
5x5 β=30
6x6 β=30

FIG. 6. Localized electron antiferromagnetic structure factor for
the Lieb lattice. For Vf d � 1.1, S tot

ff is independent of temperature
and lattice size N . However, when T is decreased for Vf d � 1.1,
S tot

ff grows as the system is cooled. These distinct behaviors reflect
the completely local nature of magnetic correlations in the singlet
phase, and an increasing correlation length at low T in the AF phase.
Vertical dashed lines at Vf d = 0.8,1.3 demark the values used for the
real space spin correlation data of Fig. 4.
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hand, the correlation length grows as T is lowered, and hence
czz′
ff (r) contributes to the structure factor out to larger and

larger distances. The structure factor becomes temperature
dependent at low T . These two regimes are evident, and are
separated by Vc ∼ 1.1. This is suggestive, but certainly not
conclusive, evidence of the presence of a quantum critical
point (QCP). At the end of the following section we will
provide a finite size scaling analysis of this data to ascertain
whether there is true long-range order below Vc. Note that
the reduction in S tot

ff as Vf d is reduced below Vf d ≈ 0.7 is a
finite temperature effect. The RKKY exchange scales as V 2

f d

and T = t/30 (βt = 30) is no longer low enough to reach the
ground state.

IV. PAM ON A QUASICRYSTAL LATTICE

We turn now to the quasicrystal geometry. Our discussion
will parallel that of the preceding section. For this lattice,
the choices for coordination number are more numerous, z =
1,2, . . . ,8, as evident in Fig. 2. The z = 1,2 sites originate
in our use of OBCs, a choice made to avoid frustration of AF
order [43]. It is important to emphasize that these coordination
numbers occur only at the lattice edges. Their contribution to
the properties of the system will vanish in the thermodynamic
limit.

czz′
ff (r) for the quasicrystal geometry is given in Fig. 7

and shows a differentiation between long-range behavior for
Vf d = 0.8 and rapid decay to zero for Vf d = 1.4. Similar to
the Lieb case, czz′

ff (r) is larger for z = 4 than z = 2. Data for
other z (not shown) confirm this trend. The AF correlations
extending outward from a site become more and more
robust as the coordination number of the conduction orbital
increases.

Figure 8 shows the singlet correlator for the N = 239 site
quasicrystal geometry of Fig. 2 (bottom). The appearance of
well-formed singlets depends on the coordination number z of
the conduction electron site—the point of maximum change of

0 5
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0

0.1

c ffzz
’ (r

)

V = 0.8 (AF phase)
V = 1.4 (singlet phase)

0 5
r

z=4z=2

FIG. 7. z resolved spin-spin correlation function between local-
ized orbitals for Vf d = 0.8 (AF phase) and Vf d = 1.4 (singlet phase)
for the N = 41 quasicrystal lattice at β = 30. In the former case,
cz
ff (r) remains nonzero out to large separations, while in the latter

case it falls off to zero. Left (right) panels are z = 2 (4).
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FIG. 8. The singlet correlators (circles) for the quasicrystal
geometry with N = 239 sites and inverse temperature β = 20 shown
as functions of Vf d . cz

f d (r = 0) is largest in magnitude for smallest
z = 1. The singlets become less and less well formed as z increases.
Data for N = 41 sites (squares) indicate that finite size effects are
relatively small. Similarly, data for β = 15 (diamonds) show that the
low T limit has been reached. Vertical dashed lines show the Vf d

values of Fig. 7.

cz
f d (r = 0) shifts from Vf d ∼ 0.4 to Vf d ∼ 1.1 as z increases.

This reflects the fact that AF is favored by a larger number of
neighbors, so that the crossover to singlets requires larger Vf d

as z increases. Since czz
f d (r = 0) is a local quantity, its value

is relatively unaffected by total lattice size (data in Fig. 8 for
N = 41 and N = 239 are similar), and it also converges with
β fairly quickly. (The data in Fig. 8 for β = 15 and β = 20
are similar.)

The sum of the spin-spin correlation function of localized
fermions in the quasicrystal geometry yields the structure
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N = 41, β = 25
N = 41, β = 30
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N = 239, β = 10
N = 239, β = 15
N = 239, β = 20

FIG. 9. S tot
ff as a function of Vf d for several inverse temperatures

β and quasicrystal lattice sizes N = 41,239. As for the Lieb lattice,
curves coincide for different β in the singlet phase at large Vf d ,
but break apart at Vf d ≈ 1.0–1.1. This signals the development of
antiferromagnetic correlations at large spatial separations at low Vf d .
Vertical dashed lines show the Vf d values of Fig. 7.
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FIG. 10. Finite size scaling plot for the PAM on the Lieb
lattice. Using 4 × 4, 6 × 6, and 8 × 8 unit cells, the normalized
structure factor S tot

ff /N scales to a nonzero value for Vf d = 0.8.
Here the inverse temperature β = 30 which is large enough that
ground-state properties have been reached for lattices of the
sizes shown.

factor and is given in Fig. 9 as a function of Vf d . For
hybridizations Vf d � 1.1, where results in Fig. 8 suggest
singlet formation is robust for all z, S tot

ff is temperature inde-
pendent. Below Vf d ∼ 1.1, curves for different β break apart,
suggesting that AF correlations are present and increasing as T

is lowered. As noted in the discussion of Fig. 6, the reduction
in the structure factor at low Vf d is a finite temperature effect:
the effective RKKY coupling goes as V 2

f d and hence even
larger β is needed for AF correlations to develop at small Vf d

(see also [44]).
In the presence of long-range order (LRO) the correlation

approaches a nonzero asymptotic value c(r → ∞) → m2,
where m is the order parameter, and the structure factor scales
as S = Nm2. Even if LRO is present only at T = 0, as is
the case in d = 2 with continuous symmetries, this scaling is
observed at T low enough that the correlation length exceeds
the largest linear lattice size studied. We expect S > Nm2 on
finite lattices, since c(r) > m2 at small distances, and these
short-range contributions can be substantial if the lattice size
is small. A finite size scaling plot for the Lieb lattice is given
in Fig. 10.

V. CONCLUSIONS

We have explored the competition between antiferromag-
netic order and singlet formation in the periodic Anderson
model in 2D geometries which are unfrustrated, but which
have conduction electron coordination which varies from site
to site. As is intuitively reasonable, singlet formation depends
on z, and is delayed to larger interorbital hybridization Vf d as
z increases. Our data suggest that, as in the case of uniform z,
AF order is present in the ground state at low Vf d and absent at
large Vf d . Related issues arise in models in which site dilution
provides different conduction electron coordination [45,46]
or in which variation in conduction electron-local orbital
hybridization is considered [47].

As noted in the Introduction, the staggered moment tends to
go down with increasing z in the spin-1/2 Heisenberg model on
quasicrystal lattices [29,32–34]. Our work differs from those
studies in two respects. First, we consider itinerant, rather
than localized spins. Second, we consider a model with two
moments per site, one associated with the conduction electron
band and one with the local band. It is not completely clear
which of these differences is responsible for the alteration
in the effect of local z on the spin correlations. It might
be of interest to study a single band (Hubbard) model with
variable z to isolate the answer to this question. A number of
experimental systems also exhibit a similar behavior in which
TNéel can be higher at the (lower z) surface than in the (higher z)
bulk [48]. Our work, and much of the literature, has considered
models with variable z which, however, remain bipartite.
The combined of frustration and variable z are studied
in [35].

Both geometries studied have unusual Uf = 0 single-
particle eigenstates. In the case of the Lieb lattice, the inequiv-
alence of the number of sites in the A and B sublattices leads
to the presence of flatbands. In the true quasicrystal geometry
(of which we explore only an approximant) the eigenstates
exhibit an intermediate scaling with system size, between the
limits where the participation ratioP grows with the number of
sites, as occurs for Bloch states, andP ∼ o(1) for conventional
localization [23,27]. Thus our work also explores the effects
of those features of the noninteracting spectrum on magnetic
correlations in the presence of interactions.

Limitations on accessible system sizes and temperatures
prevent us from addressing high-precision questions such as
whether the distribution of z destroys a sharp QCP between
the AF and singlet phases and replaces it with a more gradual
crossover. Related dynamical mean-field theory work [27]
indicates that there is a range of Kondo temperatures. It is
interesting to note that, to within the accuracy DQMC sim-
ulations provide, there is remarkably little variation between
the critical value of Vf d for different 2D conduction electron
geometry. The QCP appears to be quite close to the square
lattice value Vf d/t ≈ 1 for the Lieb and quasicrystal lattices
considered here.

The usual view of the PAM is of a two-band (conduc-
tion and localized) tight-binding Hamiltonian. Although we
have emphasized here the presence of sites with different
conduction electron lattice coordination numbers, an alternate
perspective on our work is that of a study of a PAM in which
the conduction electrons themselves have several bands. The
Lieb lattice geometry, for example, has three sites per unit
cell, and hence three conduction bands (Fig. 3), in addition
to the localized orbitals. Our DQMC simulations indicate
that the competition between singlet formation and AF order
is not fundamentally affected by this more complex band
structure.
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