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Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo
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We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo
(DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations
find that doped holes preferentially reside on oxygen orbitals and that the (π,π ) antiferromagnetic ordering vector
dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral
functions agree well with photoemission spectroscopy studies and enable identification of orbital content in
the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies
elucidates how these different numerical techniques complement one another to produce a more complete
understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap
that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to
the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in
identifying charge gaps.
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I. INTRODUCTION

The copper-oxide planes of the cuprate superconductors
are believed to support a rich variety of phases, such as high-
temperature superconductivity, magnetism, and charge-stripe
order, as well as cooperation and competition between them.
As a result, most theoretical work focuses on describing the
planes, the first step of which is to determine how many and
which of the copper and oxygen orbitals to include in a minimal
model. One of the most commonly used is the single-band
Hubbard model [1,2], which captures experimental features
such as antiferromagnetism in the undoped and lightly doped
compounds [3]. However, despite these successes, it is a
low-energy effective model that assumes that the oxygen
degrees of freedom do not contribute significantly to the
physics and that the quasiparticles are Zhang-Rice singlets
(ZRS) [4]. As such, it is not entirely clear how accurately
it captures cuprate physics, especially at higher energies and
for proposed states that explicitly involve the oxygen orbitals
[5–8]. As experiments have determined that doped holes
preferentially reside on oxygen orbitals, it has been argued
that including oxygen explicitly is crucial to understanding the
physics; indeed, recent calculations have found that a doped
hole moves on the oxygen sublattice and that its dynamics are
relatively unaffected by spin fluctuations on copper [9,10].

The three-orbital Hubbard model provides a more realistic
picture of the copper oxide planes, as it includes the copper
3dx2−y2 orbitals as well as the neighboring oxygen 2px and
2py orbitals [11–13]. To assess its accuracy in describing the
cuprates, quantities such as spectral functions can be calculated

and compared to experiments, including optical conductivity
measurements, angle-resolved photoemission spectroscopy
(ARPES), O K-edge x-ray absorption spectroscopy, and Cu
K- and L-edge resonant inelastic x-ray scattering spectroscopy
[3,14–19]. The explicit inclusion of oxygen orbitals enables a
proper description of the ZRS in order to determine whether
the ZRS picture is still applicable at high doping levels [18],
as well as a systematic evaluation of various proposals for the
pseudogap regime, such as oxygen antiferromagnetism (AFM)
and orbital loop currents that circulate between copper and
oxygen orbitals [20]. The model can thus address the issue of
when it may be necessary to include oxygen in order to model
the cuprates.

In general, the three-orbital Hubbard model is too com-
plicated to solve analytically, so numerous computational
methods have been brought to bear on the problem, such as
determinant quantum Monte Carlo (DQMC) [21–25], exact
diagonalization (ED) [3,16,26], cluster perturbation theory
(CPT) [27,28], density matrix renormalization group (DMRG)
[29–32], and dynamical mean field theory (DMFT) [19,33].
DQMC and ED both have the advantage of being numerically
exact. DQMC (discussed in detail in the next section) can treat
large system sizes, but is restricted to high temperatures due
to the fermion sign problem. On the other hand, ED solves
the eigenvalue problem for energies and wave functions of
the Hamiltonian, using iterative Krylov subspace methods.
In general, it is performed at zero temperature, but its main
drawback is that the number of states in the Hilbert space grows
rapidly with system size, limiting simulations to relatively
small clusters (current state-of-the-art ED calculations have
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studied Cu8O16 planar clusters from the undoped to overdoped
regime [16,18]). CPT combines ED and perturbation theory,
dividing the infinite plane into smaller identical clusters that
are solved exactly using ED. Hopping between the clusters is
treated to leading order in perturbation theory. CPT is exact
in the limits of strong and weak coupling as the number
of Brillouin zone sites L → ∞ and, like ED, is generally
performed at zero temperature. It offers the advantages of
fine momentum resolution in the spectral function and a
better approximation of the thermodynamic limit than ED;
however, unlike DQMC and ED, it is restricted to calculating
single-particle quantities.

Other techniques that have been used to study the three-
orbital model are DMRG and DMFT. DMRG accesses larger
system sizes than ED by truncating the Hilbert space to keep
only the most significant basis functions. Because it does
not suffer from the fermion sign problem, it can also reach
lower temperatures than DQMC. However, unlike DQMC, it
is limited to quasi-one-dimensional systems, although there
are efforts to extend it and to develop analogues in order
to study higher dimensional systems [30]. A recent DMRG
study has explored the spin and charge structures of hole-
and electron-doped systems [32]. DMFT, on the other hand,
maps the many-body interacting problem to an impurity
model embedded in a mean field and assumes a local lattice
self-energy. However, its accuracy is limited by how well the
local picture can capture the self-energy. It has been used to
map the phase diagram of the three-orbital model, but the
underdoped cuprates, which exhibit interesting phenomena
such as the pseudogap regime and Fermi arcs, has a non-local
self-energy, thus limiting the usefulness of DMFT. Recently,
the method has been extended to embed small clusters in the
mean field to capture some of this momentum dependence
[19,34,35]. Efforts have been made to treat even larger systems
by using DMRG as the impurity solver for DMFT [36].

In this paper, we use DQMC to characterize properties of
the three-orbital Hubbard model because it is a numerically
exact method that accesses larger, two-dimensional systems
and captures nonlocal effects. We perform calculations on
square systems up to Cu36O72 (N = 36) in size and with
temperatures down to β = 30 eV−1 and compare the results to
complementary ones obtained from CPT and ED calculations.
The paper is organized as follows: Section II reviews the
three-orbital Hubbard model and DQMC algorithm. Section III
explores the effects of different parameters on the fermion sign,
while Sec. IV examines the doping dependence of the potential
and kinetic energies and static correlations, commenting on
connections to experiment. Section V presents the orbitally-
resolved spectral functions and density of states, which can
be compared to experimental results and other theoretical
approaches. In Sec. VI, DQMC results are complemented by
those from ED and CPT to form a more complete picture of the
model. Finally, we offer some concluding remarks in Sec. VII.

II. MODEL AND METHODS

A. Three-orbital Hubbard model

The three-orbital Hubbard model treats the copper-oxide
planes of the cuprates, with copper 3dx2−y2 orbitals and oxygen

FIG. 1. A copper dx2−y2 orbital and its surrounding oxygen px or
py orbitals are shown. The colors indicate the phase factors (blue for
positive, red for negative).

2px and 2py orbitals described by the Hamiltonian H =
Kpd + Kpp + Vdd + Vpp [11–13]. The kinetic energy terms
Kpd and Kpp describe the copper-oxygen and oxygen-oxygen
hopping, respectively, as

Kpd =
∑
〈i,j〉σ

(tij d
†
iσ cjσ + H.c.) =

∑
〈i,j〉σ

d
†
iσ k

pd

i,j cjσ ,

Kpp =
∑

〈j,j ′〉σ
(tjj ′c

†
jσ cj ′σ + H.c.) =

∑
〈j,j ′〉σ

c
†
jσ k

pp

j,j ′cj ′σ , (1)

where d
†
iσ (diσ ) creates (destroys) a hole with spin σ on a

copper orbital at site i, c†jσ (cjσ ) creates (destroys) a hole with
spin σ on an oxygen orbital at site j , and

tij = tpd (−1)ηij ,

tjj ′ = tpp(−1)βjj ′ . (2)

In hole language, the phase convention is ηij = 1 for j = i +
1
2 x̂ or j = i − 1

2 ŷ and ηij = 0 for j = i − 1
2 x̂ or j = i + 1

2 ŷ.
In addition, βjj ′ = 1 for j ′ = j − 1

2 x̂ − 1
2 ŷ or j ′ = j + 1

2 x̂ +
1
2 ŷ and βjj ′ = 0 for j ′ = j − 1

2 x̂ + 1
2 ŷ or j ′ = j + 1

2 x̂ − 1
2 ŷ.

Figure 1 provides a cartoon of the orbitals with their phase
factors, where the product of the phase factors determines ηij

and βjj ′ . This convention is not unique; other definitions of the
phases will lead to the same results due to gauge invariance.

The remaining terms in the Hamiltonian are defined as

Vdd = Udd

∑
i

nd
i↑nd

i↓ + (εd − μ)
∑
i,σ

nd
iσ ,

Vpp = Upp

∑
j

n
p

j↑n
p

j↓ + (εp − μ)
∑
j,σ

n
p

jσ , (3)

where nα
iσ is the number operator of holes with spin σ and

orbital character α in unit cell i. Udd and Upp are the strengths
of the copper and oxygen on-site interactions, respectively.
Finally, the chemical potential μ controls the filling, where εd

and εp are the site energies of the copper and oxygen orbitals,
respectively. With tpp and εd set to 0 for simplicity, the nonin-
teracting band structure is E1

k = εp − μ, E2,3
k = 1/2(εp−2μ) ±

(1/2)
√

ε2
p + 16t2

pd [sin2 (kxa/2) + sin2 (kya/2)].
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Unless explicitly stated, we use a canonical parameter
set for the cuprates (in units of eV): Udd = 8.5, Upp = 4.1,
tpd = 1.13, tpp = 0.49, and εp − εd = 3.24. The hopping
integrals were calculated by a cluster-model approach; the
on-site interaction strengths were determined via the local-
density method and found to be consistent with photoemission
spectroscopy results [37–39]. Our results remain qualitatively
the same with other parameter sets for the cuprates [40]. The
main parameter we will vary in this study is Upp. Throughout,
we work on square lattices, where the total number of Cu
atoms (or unit cells) is denoted by N (CuNO2N ). We set
a = 1 as the unit of length and report all energies in eV unless
otherwise stated. Finally, all occupancies are reported in hole
language, where 〈ntot〉 = 0 corresponds to six electrons/CuO2

unit cell. We define half filling as 〈ntot〉 = 1, so hole doping
corresponds to 〈ntot〉 > 1 and electron doping 〈ntot〉 < 1 in our
notation. For ease of comparison to earlier studies, however,
the single-particle spectral functions are shown in electron
language, where hole doping corresponds to 〈ntot〉 < 1 and
electron doping 〈ntot〉 > 1. The oxygen spectral weight is
defined as the sum of the 2px and 2py single-particle spectra.

B. DQMC algorithm

This section provides an overview of the DQMC algorithm
for the three-orbital Hubbard model [23,24,41]. Observables
are computed in the grand canonical ensemble

〈Ô〉 = tr[Ôe−βH ]

tr[e−βH ]
, (4)

with the imaginary-time interval [0,β] divided into L slices
of width �τ . Rewriting the Hamiltonian in terms of the
noninteracting and interacting pieces, the exponential can be
decomposed using the Trotter approximation

e−L�τH ≈ (e−�τKpd e−�τKppe−�τVdd e−�τVpp )L, (5)

dropping terms in the expansion of order O(�τ 2) and higher.
The noninteracting terms are quadratic in the fermion operators
and can be evaluated in a straightforward manner; however,
the interaction terms are quartic in the fermion operators
and require more care. To transform them to quadratic form,
auxiliary Hubbard-Stratonovich fields sm,l are introduced at
each site m and time slice l:

e−�τUααnα
m↑nα

m↓ = 1

2

∑
sm,l

sm,le
λαsm,l (nα

m↑−nα
m↓)− 1

2 Uαα�τ (nα
m↑+nα

m↓),

(6)

where α refers to the d or p orbitals and λα is defined by
tanh2 (λα/2) = tanh (�τUαα/4). Once the interaction terms
have been rewritten in quadratic form, the trace over the
fermion degrees of freedom can be performed and the partition
function takes the form

Z =
∑

sm,l=±1

det M+ det M−, (7)

where

Mσ = I + Bσ
LBσ

L−1...B
σ
1 . (8)

Here,

B±
l = e−�τkpd

e−�τkpp

evd
±(l)ev

p
±(l), (9)

with I as the identity matrix and the definition

vα
±(l)mm′ = δmm′

[
± λαsm,l + �τ

(
μ − εα − Uαα

2

)]
. (10)

The observable 〈Ô〉 can be calculated via a standard
Markov-chain Monte Carlo technique to sample the Hubbard-
Stratonovich fields sm,l , using a modified heat bath algorithm
to accept proposed changes. The weight of each Hubbard-
Stratonovich field configuration is given by det M+ det M−/Z,
but the product of determinants is not positive definite. To
ensure the probability distribution for a given configuration
{s} is positive definite, the probability is taken to be P (s) =
|det M+ det M−/Z| and the fermion sign, fsgn, is included in
the expression separately:

〈Ô〉 =
∑

sm,l
ÔfsgnP (s)∑

sm,l
fsgnP (s)

, (11)

where the quantity in the denominator is the average fermion
sign. Except in specific cases where it is protected by symmetry
(such as at half filling in the single-band Hubbard model),
the average fermion sign is less than 1. As the system size
increases or the temperature decreases, the average fermion
sign tends towards 0, leading to an amplification of statistical
fluctuations and limiting the parameter regime that can be
accessed (discussed in greater detail in the following section).

In order to obtain quantities such as spectral functions
Aα(k,ω) = Gαα(k,ω) and the density of states (DOS) to
compare to experiments, the imaginary-time Green’s functions
are analytically continued to real frequencies. As a note, the
spectral function is given by the trace of the Green’s function
matrix in either the orbital or band basis. The spectral function
is positive definite and obeys a sum rule. Here we employ the
maximum entropy method [42] (MaxEnt, or MEM) that uses
Bayesian statistical inference to determine the most probable,
or “best,” spectral density given an imaginary-time correlator.

In this study, we compute equal-time (or static) single-
and two-particle correlations as well as the unequal-time
spectral functions, expanding on earlier work by using a
parameter set specific to the cuprates, which includes physical
effects such as finite oxygen-oxygen hopping, accessing larger
system sizes, and resolving orbital-dependent behavior in the
spectral functions [23–25]. The equal-time quantities, such
as the filling and spin-spin and density-density correlation
functions, provide an energy-integrated perspective on how
the system responds to the addition or removal of particles and
to excitations. The unequal-time quantities, such as the single-
particle spectral function and density of states, complement
the equal-time quantities with information on how spectra are
distributed as a function of energy. Together, they facilitate a
more complete understanding of how the model behaves.

III. FERMION SIGN

The fermion sign affects the statistical error in the cal-
culation; hence its average value determines the regions
of parameter space that are accessible to the simulation.
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FIG. 2. The average fermion sign is plotted versus filling for
N = 4, N = 16, and N = 36 at β = 8 eV−1 and Upp = 4.1 eV. In
general, a larger system size results in a more severe sign problem.

Particle-hole symmetry is unbroken in the simple undoped
single-band Hubbard model with nearest-neighbor hopping
only and ensures that the average fermion sign is 1; however,
this symmetry is broken in the three-orbital Hubbard model
for any combination of hoppings, and the fermion sign is only
partially protected at 0% doping. As shown in Fig. 2, hole
or electron doping reduces the sign to a minimum value at
intermediate doping levels relevant to the cuprates. A clear
particle-hole doping asymmetry is observed, reflecting the
natural asymmetry in the three-orbital Hubbard model. At
〈ntot〉 = 0 and 2, the symmetry between the up and down spins
fully protects the fermion sign.

As demonstrated generally for quantum systems [43], the
average sign is proportional to exp (−βV �F ), where V

is the volume of the system and �F is the difference of
free energy densities between the fermionic system and the
corresponding bosonic system used for Monte Carlo sampling.
Statistical errors grow exponentially with increasing system
size and decreasing temperature, as reflected in Fig. 2. Here
the volume V = 3N , so the average sign decreases as N

increases. Interestingly, the average fermion sign shows local
maxima away from 0% doping in the N = 4 system, an effect
which would presumably become more pronounced at lower
temperatures [22,44]. When Upp > 0, all the sites show cor-
relations such that for all possible hopping paths, the order of
the fermion operators would be important. Hence, the average
sign is suppressed more on the hole-doped side than the
electron-doped side. When Upp = 0, Hubbard-Stratonovich
fields on oxygen are eliminated, allowing the simulation to
access hole doping levels relevant to the cuprates more easily.

Increasing the on-site interactions decreases the average
fermion sign (Fig. 3), because larger values of Udd or Upp

weight the Hubbard-Stratonovich field configurations, which
are potentially negative, more heavily in the path integral.
Since the choice of interaction strength on the copper orbitals
is guided by spectroscopy, Udd cannot be reduced significantly
while still making a meaningful comparison with real mate-
rials. However, because p electrons are more delocalized and
hence interact less strongly than d electrons, there is greater
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β = 8
N = 36

FIG. 3. The average fermion sign is plotted versus filling for
different values of Udd and Upp at β = 8 eV−1 and N = 36. Reducing
the interactions improves the sign problem and, in the case of Upp ,
can even flip which side of diagram has the more severe problem.

leeway in selecting the oxygen on-site interaction. It has
been common practice in literature to neglect Upp altogether
[23,24,41,45]. As expected, setting Upp = 0 eliminates the
Hubbard-Stratonovich fields on oxygen and hence leads to a
dramatic improvement in the sign problem.

As discussed above, the fermion sign decreases exponen-
tially with decreasing temperature but can be enhanced by
reducing the interaction strengths, or even neglecting Upp, to
access the lowest possible temperatures for a given system
size. It has been proposed that as the allowed k points on
small clusters fill up, local maxima occur in the average
sign, which is a system geometry effect that is enhanced at
lower temperatures [44]. Figure 4(a) shows the development
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FIG. 4. The average fermion sign is plotted versus filling for
a range of temperatures for the (a) N = 16 and (b) N = 36
systems, with Upp = 0 to access lower temperatures. Decreasing the
temperature significantly decreases the average sign but preserves
the direction of the particle-hole asymmetry. The partially protected
fillings in the N = 16 system become more pronounced with
decreasing temperature.
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FIG. 5. The average fermion sign is plotted versus filling for
different values of tpp to demonstrate the effect of decreasing the
number of hopping pathways. Again, the particle-hole asymmetry
is evident, as tpp = 0 invariably enhances the average sign for hole
doping more than it does for electron doping.

of maxima in the average sign at specific doping levels on the
N = 16 cluster. That the doping levels are determined by the
system geometry is supported by the absence of local maxima
at the same doping levels in the N = 36 system [Fig. 4(b)]
(presumably, the N = 36 fermion sign will develop local
maxima at different doping levels at lower temperatures). This
result suggests that one can tune the partially protected doping
levels by changing the system geometry in order to access
particular doping levels that are inaccessible on most clusters.

Figure 4 also demonstrates that the qualitative behavior
of the electron-hole doping asymmetry is preserved, as the
average sign is suppressed more by electron doping than hole
doping regardless of temperature. However, the enhancement
of the average sign on the hole-doped side relative to that
on the electron-doped side is less pronounced as temperature
decreases, making it comparatively more difficult to access
doping levels relevant to the cuprates. Together, Figs. 3 and
4 suggest that it is possible to access lower temperatures at a
specific doping level by taking advantage of the asymmetry
from including or neglecting oxygen interactions.

Further improvement of the average fermion sign over a
wide doping range can be achieved by setting the oxygen-
oxygen hopping tpp = 0, as shown in Fig. 5. Reducing the
number of hopping pathways and hence the number of closed
fermion loops will reduce the number of permutations of
creation and annihilation operators that can potentially lead to
negative signs. The particle-hole doping asymmetry remains
and shows the same qualitative behavior as when tpp is finite,
with the average sign suppressed more on the electron-doped
side. In the three-orbital Hubbard model, tpp plays a role
analogous to that of the next-nearest-neighbor hopping t ′ in
the single-band Hubbard model [46]. In both the single-band
and three-orbital models, the average sign at 0% doping is
suppressed, and the local minimum in the average sign shifts
at higher electron doping levels when t ′ or tpp is finite. At low
electron doping levels, the low hole density means that tpp has
a decreased effect on the average sign.

A systematic exploration of how different parameters affect
the average fermion sign points to a few ways to improve
the sign problem and simulate larger system sizes and lower
temperatures while ensuring that the model is applicable to
the cuprates. The first method is to adjust the geometry
of the system to shift the doping levels at which the sign
has local maxima. As shown in Fig. 4(a), the sign can be
dramatically increased, especially at low temperatures. In
addition, a recent study of the fermion sign in the single-band
model has shown that the rectangular lattice ameliorates the
sign problem compared to the square lattice [44], which
merits examination in the three-orbital model. However, this
approach can be computationally intensive, so the second
method takes advantage of the particle-hole doping asymmetry
in the average sign when Upp > 0 versus Upp = 0 to more
easily access hole or electron doping levels. A third method is
to achieve an improvement in the sign for all dopings relevant
to the cuprates by neglecting oxygen-oxygen hopping, as has
been done in earlier studies [23,24,41,45], but it risks missing
important physics, such as the stability of the Zhang-Rice
singlet.

IV. ENERGY AND STATIC CORRELATIONS

A. Double occupancy and energy

In this section, the doping, system size, and temperature de-
pendences of the equal-time double occupancy and energy of
the three-orbital Hubbard model are explored systematically.
Figure 6 shows the orbitally-resolved double occupancies,
Dα = ∑

i〈nα
i↑nα

i↓〉 with α as the orbital index, versus filling
for different temperatures on the N = 36 system. The undoped
system has on average 〈nCu〉 ∼ 0.7−0.8 and 〈nOx,y〉 ∼ 0.2−0.3
[see Fig. 8(b)]. Hence, any doped holes that reside on copper
will add to the double occupancy, while doped holes that go
into an oxygen orbital will in general not encounter a pre-
existing hole. As a result, the double occupancy increases much
more rapidly on the copper orbitals than on the oxygen orbitals.
On the electron-doped side, the orbitally-resolved double
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FIG. 6. The double occupancy Dα versus filling on the copper and
oxygen orbitals is shown for different temperatures, with N = 36 and
Upp = 4.1 eV. It exhibits no significant system size or temperature
dependence.
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FIG. 7. Kinetic energy of the holes versus filling for different
temperatures in N = 16 and N = 36 systems, with Upp = 4.1 and
0 eV. The non-interacting kinetic energy (solid black line) is shown
for comparison.

occupancies change less rapidly than on the hole-doped side
of the phase diagram because there were fewer to start with, as
in general each copper orbital has 0 or 1 holes. Lowering
the temperature from β = 6 to β = 10 eV−1 or changing
the system size from N = 36 to N = 16 barely affects the
double occupancy. Hence the potential energy, which is a
sum of the double occupancies on copper and oxygen orbitals
weighted by the on-site interactions, is essentially independent
of temperature and system size.

The single-particle kinetic energy K = 〈Kpd〉 + 〈Kpp〉 is
governed by two competing trends with hole doping in the
correlated system. It is increased by having more holes
available to hop, and it is decreased by double occupancies
that block hopping pathways. Figure 7 shows that the kinetic
energy steadily increases from 〈ntot〉 = 0 to 〈ntot〉 = 1 as the
addition of holes increases hopping. It reaches a maximum at
〈ntot〉 = 1 before decreasing again due to increasing double
occupancy (Fig. 6). The effect of double occupancies can
be seen especially clearly from the low kinetic energy near
〈ntot〉 = 2, where the lowest band is filled. The abrupt decrease
near 0% doping corresponds to the Mott gap in the filling
(see next section). Setting Upp = 0 removes the penalty on
double occupancy for oxygen, so there is reduced impetus for
holes to hop off oxygen orbitals and hence a lower kinetic
energy. Like the potential energy, the kinetic energy does not
have a strong dependence on system size or temperature. For
comparison, the kinetic energy in the noninteracting system is
included, showing that there is no Mott gap and hence no abrupt
decrease in the energy near 0% doping when Udd = Upp = 0.
As in the single-band Hubbard model, the Mott physics away
from 0% doping is not very prominent from the single-particle
perspective.

B. Filling

As mentioned above, equal-time quantities provide infor-
mation on energy-integrated, static correlations. In particular,
the filling, which is a single-particle quantity, demonstrates
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FIG. 8. (a) The total filling curve shows a gap opening with
decreasing temperature, with Upp = 0 eV and N = 16 to access the
lowest possible temperatures. The inset shows the total filling for
N = 36, Upp = 4.1 eV, and β = 10 eV−1 and has the same axes.
(b) The orbitally resolved fillings are shown for the same parameters
as the inset in (a) and demonstrate that doped holes preferentially
reside on oxygen atoms. As we are using the larger system size, the
fermion sign is too small at certain chemical potentials to determine
the filling; however, the solid lines indicate the trend that is consistent
with results in smaller systems. A dashed line indicates the chemical
potential corresponding to the undoped system.

how the system responds to the addition or removal of particles.
The total filling 〈ntot〉 can be studied as a function of the
chemical potential μ to explore the opening of a gap at low
temperatures. We set Upp = 0 and N = 16 to access tempera-
tures as low as β = 20 eV−1 in a window around 0% doping
[Fig. 8(a)] to show that a distinct plateau, corresponding to the
Mott gap, develops as temperature decreases. To confirm that
neglecting oxygen on-site interactions and using a smaller
system size do not affect the conclusions, the total filling
with Upp = 4.1 eV, N = 36, and β = 10 eV−1 is shown in
the inset. The gap appears to open at higher temperatures
in the larger system, but overall the qualitative behavior is
similar, indicating that oxygen on-site interactions do not play
a significant role close to the Fermi level (EF ).

Figure 8(b) shows the fillings on the copper and oxygen
px orbitals (which have the same behavior as the oxygen py

orbitals due to x − y symmetry in the model) for the Upp =
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4.1 eV, N = 36, and β = 10 eV−1 system. The orbitally-
resolved fillings exhibit distinct particle-hole asymmetry in
their slopes. As known in the cuprates, doped holes preferen-
tially reside on oxygen, which is reflected in the 〈nO〉 doping
trend. Doped electrons, on the other hand, generally reside
on the copper orbitals; hence 〈nCu〉 has a higher slope on the
electron-doped side. This behavior is consistent for different
system sizes and temperatures, indicating that the occupation
is independent of these simulation details.

C. Spin-spin correlation function

To understand how the system responds to excitations
or perturbations, it is necessary to examine multiparticle
quantities. In addition, single- and multiparticle quantities
have been seen in the single-band Hubbard model to exhibit
different renormalizations with doping [47], suggesting that it
may be important to study two-particle quantities such as the
spin-spin and density-density correlations to understand the
behavior of the three-orbital system. The orbitally-resolved
equal-time spin-spin correlation function is defined as

Sα(q) =
∑

l

eiq·lSα(lx,ly), (12)

where

Sα(lx,ly) = 1

N

∑
i

〈(
nα

i↑ − nα
i↓

)(
nα

i+l↑ − nα
i+l↓

)〉
. (13)

The spin-spin correlation function on copper orbitals shows
a pronounced tendency towards Néel antiferromagnetic or-
dering, especially near 0% doping. As shown in Fig. 9, the
ordering vector q = (π,π ) dominates for a wide doping range
(approximately 60% electron doping to 40% hole doping),
although the antiferromagnetic tendency is destroyed rapidly
with increasing doping in agreement with experiment. The
particle-hole doping asymmetry also agrees with experiments
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FIG. 9. The spin-spin correlation function is plotted versus filling
for four different possible ordering vectors on the copper and oxygen
(inset) orbitals. On copper, (π,π ) antiferromagnetism dominates in
the undoped system, decreasing with doping. The oxygen orbitals do
not show signs of any particular spin order. Parameters used here are
N = 16, Upp = 4.1 eV, and β = 10 eV−1.
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FIG. 10. The copper spin-spin correlation function shows that
q = (π,π ) order is strengthened by increasing system size and
decreasing temperature (Upp = 0). The inset shows the finite size
scaling at 0% doping and β = 8 eV−1.

showing that AFM is more robust on the electron-doped side
of the phase diagram [48]. For these geometries, there is no
obvious sign of oxygen spin lattice symmetry breaking around
12.5% hole doping (inset of Fig. 9).

Figure 10 focuses on (π,π ) AFM, which has been
well characterized by experiments, and demonstrates that
SCu(π,π ) peaks more strongly as the system size increases
or as the temperature decreases. This behavior suggests that
DQMC simulations can identify trends at higher temperatures
that correspond to low-temperature ordered phases without
necessarily accessing the thermodynamic limit or the low
temperatures comparable to those in experiments. Finite size
scaling demonstrates that SCu(π,π )/N tends to 0 as 1/N

decreases (inset of Fig. 10) [23], indicating that there is no true
long-range antiferromagnetic order at finite temperatures, as
expected in two dimensions by the Mermin-Wagner theorem.
A comparison of Fig. 9, where Upp is finite, and Fig. 10, where
Upp = 0, indicates that there is no qualitative difference in the
behavior of the copper spin-spin correlation function and that
the effects of oxygen interactions are negligible.

Examining the spin-spin correlation function in real space
provides insights into how the system crosses over from
short-range antiferromagnetic to ferromagnetic correlations at
high (>40%) hole doping levels, an effect which has been
seen in the single-band Hubbard model [49]. The simulations
average the correlation functions over the system, so here we
examine the average spin correlations. Figure 11 shows the
nearest [SCu(1,0)] and next-nearest neighbor [SCu(1,1)] Cu-Cu
spin correlations in the N = 16 and N = 36 systems. At 0%
doping, SCu(1,0) is strongly antialigned with the reference spin
at (0,0) and SCu(1,1) is strongly aligned with the reference
spin, which is consistent with (π,π ) antiferromagnetic order.
As the system is hole doped, the magnitudes of the spin correla-
tions decrease as (π,π ) AFM is destroyed. In an intermediate
window, there is no particular spin order, but at high hole
doping levels, SCu(1,0) becomes positive, indicating that the
system is developing short-range ferromagnetic correlations.
Increasing the system size does not significantly impact the
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FIG. 11. Nearest [SCu(1,0)] and next-nearest [SCu(1,1)] neighbor
Cu-Cu spin-spin correlation function versus filling, with Upp =
4.1 eV and β = 8 eV−1, showing the crossover from AFM to
short-ranged FM correlations for N = 16 and 36.

qualitative behavior of the correlations or even doping level of
the crossover.

The crossover from short-range antiferromagnetic to fer-
romagnetic correlations is not affected by temperature on
a qualitative or quantitative level. As expected, decreasing
the temperature enhances the magnitudes of SCu(1,0) and
SCu(1,1) near 0% doping, confirming that antiferromagnetic
order is strengthened. However, even when the temperature
is lowered from β = 8 to β = 20 eV−1 in the N = 16 and
Upp = 0 system, there is no significant change in the doping
level at which the system begins to exhibit short-ranged
ferromagnetic correlations. Hence the conclusions drawn from
higher-temperature simulations appear to be robust.

Because the magnetic properties of the cuprates have been
studied so intensively, the spin correlations provide an effective
test of how closely DQMC simulations of the Hubbard model
capture the behavior of the materials. Neglecting Upp has
no qualitative effect on the spin-spin correlation function
and demonstrates that, at least in the equal-time quantities,
oxygen does not play a significant role in the spin physics.
The results agree with observations that the cuprates exhibit
Néel order near 0% doping, which is more robust on the
electron-doped side of the phase diagram [48], showing that the
simulations are capable of identifying trends that correspond
to low-temperature states.

D. Density-density correlation function

The question of whether the three-orbital Hubbard model
shows charge order on the copper or oxygen orbitals can
be addressed using the equal-time density-density correlation
function

χα(q) =
∑

l

eiq·lχα(lx,ly), (14)

where

χα(lx,ly) = 1

N

∑
i

〈(
nα

i↑ + nα
i↓

)(
nα

i+l↑ + nα
i+l↓

)〉
. (15)
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FIG. 12. Density-density correlation function versus filling on the
(a) copper and (b) oxygen orbitals for different ordering vectors with
N = 16 and Upp = 0 (qualitatively similar results are obtained for
Upp = 4.1 eV). The system shows a slight tendency to (π,π ) charge
ordering on the electron-doped side on copper.

The orbitally-resolved density-density correlation functions
for N = 16 and Upp = 0 are shown in Fig. 12. (Qualitatively
similar results are obtained for Upp = 4.1 eV.) Despite
experimental evidence for charge and spin stripes around
12.5% hole doping [50–55], the ordering vector q = (π/2,0)
does not dominate on the copper orbitals, as would be
expected. This may be because the system geometries under
consideration do not support the full stripe order pattern, which
would require a width of at least eight unit cells. On the
electron-doped side, there is a slight tendency on the copper
orbitals to enhanced charge fluctuations near (π,π ) at ∼30%
electron doping, although it is an unrealistic doping in the
cuprates. For completeness, the other nonzero elements of
the density-density correlation function, χCu−Ox (q), χOx−Ox (q),
and χOx−Oy (q), are shown in Fig. 13. Evidently, the oxygen
orbitals show no sign of anomalous behavior or indeed of any
particular charge order, either relative to other oxygen orbitals
or to copper orbitals.

V. SPECTRAL FUNCTIONS

Unequal-time quantities, such as the spectral function,
provide dynamical information about the behavior of a sys-
tem. The orbitally-resolved single-particle spectral function,
Aα(k,ω), can be computed and compared to photoemission
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FIG. 13. Density-density correlations between the copper and
oxygen orbitals, and between the oxygen orbitals for different
ordering vectors in a N = 16, Upp = 0 system (qualitatively similar
results are obtained for Upp = 4.1 eV).

spectroscopy (PES) results to evaluate how well the simula-
tions describe the cuprates. PES has shown that the cuprates
have little spectral weight near the Fermi level (ω = 0), with
most of the weight contained in a large peak centered around
ω = 4 eV below EF that includes contributions from the apical
oxygen orbitals, nonbonding oxygen and other planar orbitals,
and the Zhang-Rice triplet (ZRT) band [56]. Figure 14(a)
shows the copper (red) and oxygen (blue) spectral functions at
momenta along high-symmetry cuts in the first Brillouin zone
in an undoped N = 16 system.

The spectral functions capture the prominent PES features,
with a large nonbonding (NB) band (from the nonbonding
phase of the planar oxygen orbitals) with mostly oxygen orbital
content around 3–4 eV below the Fermi level. The size of the
peak in PES is larger than that in our calculation because
the three-orbital Hubbard model excludes not only apical
and other nonbonding oxygen orbitals, but also out-of-plane
oxygen pz orbitals and other d orbitals that would contribute
to the nonbonding peak and low-energy structure. Due to the
high simulation temperature, the weights of the lower Hubbard
band (LHB) and ZRT band are spread out into the long tails
of the peaks below ω = 4 eV. Similarly, the upper Hubbard
band (UHB) is smeared into broad peaks and long tails above
the Fermi level. The ZRS band is located just below EF .
As expected, the system has an indirect charge transfer gap
between (π/2,π/2) and (π,0) [57,58]. The DOS, shown in the
inset, confirms that most of the spectral weight in the system
resides in the oxygen NB band. There is a clear gap at the
Fermi level, but the spectral weight is nonzero due to the
elevated temperatures.

Figures 14(b)–14(d) show the spectral functions from
12.5% to 37.5% hole doping (optimally doped to overdoped),
enabling us to identify the evolution of orbital character in
different bands. An examination of the ZRS band shows the
evolution of the ZRS upon hole doping. At 0% doping, there is
greater oxygen than copper weight in the peak at (π/2,π/2).
Hole doping causes the copper and oxygen character to become
roughly equivalent, as expected for a singlet configuration
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FIG. 14. The orbitally-resolved spectral functions at (a) 0%,
(b) 12.5%, (c) 25%, and (d) 37.5% hole doping illustrate the doping
evolution of the lower Hubbard band (LHB), Zhang-Rice triplet
(ZRT) band, nonbonding (NB) band, Zhang-Rice singlet (ZRS)
band, and upper Hubbard band (UHB) in the N = 16 system, where
β = 8 eV−1, tpp = 0.49 eV, and Upp = 4.1 eV. The insets show the
density of states for each doping level, with the same frequency axis
as the spectral functions.

[59–61], and the ZRS appears to persist even at 37.5%
hole doping, lending support to the perspective that the ZRS
picture is still valid at high doping levels [18,62,63]. There is
never any oxygen orbital content in the ZRS band at the �

point [59–61], as known from experiments with low photon
energies that are more sensitive to oxygen, whereas there is
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FIG. 15. The orbitally-resolved spectral functions at 12.5% hole
doping are shown for high-symmetry cuts in the first Brillouin
zone in the N = 36 system, where β = 8 eV−1, tpp = 0.49 eV, and
Upp = 4.1 eV.

a shift towards greater copperlike spectral character at higher
energies, which in experiments are more sensitive to copper
[64]. These comparisons provide additional evidence for the
effectiveness of the three-orbital Hubbard model in capturing
cuprate physics.

Although accessible system sizes are limited by the fermion
sign problem, we can compute the spectral functions of the
N = 36 system and access different momenta to complement
the N = 16 system. Figure 15 focuses on 12.5% hole doping,
which can be compared to Fig. 14(b). While shared momenta
[such as (π,π ) and (π,0)] provide a way to gauge the
impact of system size on the spectral functions, the additional
points [such as (π/3,π/3) and (2π/3,2π/3)] enable a finer
momentum resolution. Focusing again on the ZRS band,
Figs. 14(b) and 15 show that the oxygen content has a strong
momentum dependence, which is due to a form factor that
arises from the finite spatial extent of the ZRS [65].

The orbitally-resolved spectral functions thus enable a
direct comparison to PES experiments to assess how well
the three-orbital Hubbard model describes cuprate physics.
Clearly, including oxygen is crucial to describing the distri-
bution of spectral weight away from the Fermi level; in fact,
including the oxygen 2px,y orbitals is not sufficient to account
for all the weight observed by PES in the NB band [56].
Quantitative considerations aside, the three-orbital Hubbard
model does exhibit the appropriate qualitative behavior and
provides a more accurate picture of the cuprates than the
single-band Hubbard model, as the latter treats the single-band
LHB as the ZRS band and ignores the NB band, ZRT band,
and proper LHB [66]. The three-orbital simulations not only
identify different bands, but go a step further to elucidate the
evolving orbital character as the system is hole doped across
the range accessible to the cuprates.

VI. COMPARISON TO ED AND CPT

Computing quantities such as the equal-time correlation
functions and single-particle spectral function enables a direct

comparison of DQMC with the complementary numerical
techniques of ED and CPT. Both ED and the small-cluster
calculation step of CPT simulations are performed on Cu8O16

clusters, while the DQMC calculations are performed on a
Cu16O32 (N = 16) system. ED and CPT both work in a fixed
particle number sector (in the canonical ensemble) at zero
temperature, while the DQMC simulation is carried out in the
grand canonical ensemble at β = 8 eV−1. All simulations are
performed with the same parameter set as that given in Sec. II.

The orbitally-resolved spectral functions provide a con-
sistency check between the three methods in the undoped
system. Figures 16(a)–16(b) show that on a qualitative level,
the DQMC, ED, and CPT spectra line up well at momenta
on high-symmetry cuts in the first Brillouin zone. (All three
sets of spectra have been normalized to the same sum rule for
ease of comparison.) Despite thermal broadening from high
temperature, DQMC peak positions are in many cases almost
identical to those of CPT, especially at (π/2,π/2). Figure 16(c)
illustrates the fine momentum resolution capability of CPT and
together with the DOS in Fig. 16(d) enables clear identification
of the different bands and their dispersions. Unlike the DQMC
simulation, in which the broad peaks and long tails make it
impossible to clearly distinguish all of the bands [compare to
Fig. 14(a)], CPT resolves the LHB around ω ∼ 10 eV and the
ZRT band as a shoulder at ω ∼ 5 eV below the Fermi level. As
expected, the NB band with predominantly oxygen character
is located at ω ∼ 4 eV below EF and the ZRS band and UHB
are just below and above the Fermi energy, respectively.

To distinguish behavior due to single-electron physics
from band renormalizations due to strong correlations, the
noninteracting bands are overlaid on the CPT data as dashed
lines in Fig. 16(c). Away from the Fermi level, the interactions
transfer weight into the LHB and shift band energies without
strongly affecting the qualitative behavior of the dispersion,
as seen near the top of the UHB around (π,π ) (the M-point).
The NB band dispersion is controlled by the oxygen-oxygen
hopping and hence is also not changed significantly apart from
an energy shift due to Upp. Near the Fermi level, similar to
the single-band model, interactions open a gap with precursors
just above and below EF that will develop with hole doping
into a ZRS band (analogous to the quasiparticle band in the
single-band model) crossing the Fermi level. In addition, as
in the single-band model, interactions lead to a “waterfall”
feature that gives rise upon hole doping to the high-energy
anomaly (HEA) seen in PES that ranges from approximately
400 meV to 1 eV below EF near (π/4,π/4) [67].

The direct (optical) [68–71] gap in the cuprate parent
compounds is known from experiments to be 1.5–2 eV, and the
indirect gap is somewhat smaller, providing a quantitative way
to compare the three numerical techniques. In ED, the direct
optical gap is ∼1.7 eV, in agreement with experiments. As
expected, the first electron removal state occurs at (π/2,π/2)
and the first electron addition state at (π,0), with a slightly
smaller indirect gap of ∼1.5 eV. In CPT, the indirect gap
is determined from the peak-to-peak distance in the DOS
[Fig. 16(d)] and is slightly smaller than the ED indirect gap.
This difference most likely arises from finite-size effects in
ED, as CPT provides a better estimate of the infinite-lattice
limit. The direct and indirect gaps from the DQMC spectral
functions, determined from the peak-to-peak distances in
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FIG. 16. The (a) copper and (b) oxygen spectral functions are calculated in the undoped system using DQMC, ED, and CPT. Despite
the different system sizes and temperatures, the peak positions show reasonable agreement. With fine momentum resolution, CPT resolves the
(c) band dispersion and (d) DOS in detail. In (c), the noninteracting bands are overlaid as dashed lines on the CPT band structure. In (d), the
shading in the DOS indicates orbital content (red for copper, blue for oxygen) in the filled bands. For example, the color gradient in the ZRS
band indicates the increasing copper content away from EF .

the spectral functions, appear to be smaller (∼1 eV). This
discrepancy merits further investigation to determine whether
it can be explained simply as a thermal or finite-size effect.

One possible cause of the smaller DQMC gaps is peak
broadening from high temperature, but another contributing
factor might be the difference in system size. Because the
indirect gap requires a larger cluster to capture both the
appropriate momentum points and the behavior near them,
ED and CPT may overestimate the gap size. To examine the
effects of temperature and system size, we set N = 4 in the
DQMC computation to access low temperatures for a better
comparison to the ED and CPT calculations, and simulate
temperatures ranging from β = 8 to β = 30 eV−1 (Fig. 17).
We use the width of the plateau in the filling as a proxy for
the charge transfer gap because the plateau width captures the
correct chemical potential scale and the exact gap, whereas
analytic continuation may not properly describe the spectral
tails near the gap. The zero-temperature extrapolated gap,
which in the N = 4 system must be the direct gap at (π,0),
is ∼1.6 eV, in the same range as the ED calculation. The gap
can be extracted from the plateau in larger systems as well,
although it is evident from the inset in Fig. 17 that the gap
opens at significantly lower temperatures at larger N . When
N = 16, the zero-temperature extrapolated (indirect) gap is
∼0.77 eV, only about half the size of that at N = 4. When
N = 36, the DQMC simulations cannot access sufficiently low
temperatures for a gap to fully develop. Recent experiments
have suggested that the indirect gap may be smaller than

previously appreciated [72] (on the order of 0.8 eV). The
agreement with the indirect gap from the larger DQMC system
implies that the ED and CPT values may be strongly increased
by finite-size effects.

CPT achieves fine momentum resolution at the cost
of increased computational complexity associated with the
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FIG. 17. The filling versus chemical potential curves are shown
on an N = 4 cluster in order to access low temperatures to highlight
the opening of a charge transfer gap. The inset shows an extrapolation
of the gap size � to zero temperature.
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FIG. 18. Comparison of the (a) orbitally-resolved filling and (b)
local moments on copper and oxygen, showing good quantitative
agreement between DQMC and ED. The DQMC simulations are
performed with N = 16 and β = 8 eV−1.

effective Hilbert space size for clusters with open boundary
conditions. As a result, it is much more difficult for CPT to
access doped systems, but doping evolution can be compared
between DQMC and ED. DQMC, which works in the grand
canonical ensemble, has a continuously tunable filling, while
ED is restricted to discrete fillings, but a comparison demon-
strates that the overall agreement persists over a wide doping
range. Qualitatively, the spectral functions show a similar
degree of agreement at 12.5%, 25%, and 37.5% hole doping
as at 0% doping. Whereas the identification and interpretation
of the direct and indirect gaps are more challenging, as
seen above, equal-time quantities provide a clear-cut way
of comparing DQMC and ED. The orbitally-resolved filling
curves 〈nCu,O〉 are numerically the same within error bars at
many dopings [Fig. 18(a)]. The local spin moments also agree
well at a quantitative level, and any slight discrepancy can be
explained by thermally driven fluctuations of holes between
copper and oxygen orbitals [Fig. 18(b)]. Hence Fig. 18 shows
that the DQMC and ED results agree well with each other.

These comparisons between DQMC, ED, and CPT cal-
culations demonstrate that despite being limited to high
temperature, conclusions drawn from DQMC agree with those
from the zero-temperature methods, ED and CPT. In addition,
ED, which is limited to small system sizes, produces results

in good agreement with DQMC even on a quantitative level,
showing that they access similar physics in spite of temperature
and size limitations. Thus the strengths of ED and CPT can be
used to complement those of DQMC to form a more complete
picture of the properties of the three-orbital Hubbard model.

VII. CONCLUSIONS

We have characterized the three-orbital Hubbard model
using DQMC for a set of parameters applicable to the cuprates.
A systematic exploration of the average fermion sign maps out
the effects of different parameters, showing that increasing
system size, decreasing temperature, and finite oxygen on-site
interactions and oxygen-oxygen hopping reduce the average
sign. At certain doping levels, a coincidence of system
geometry leads to local maxima, which may enable better
access to intermediate dopings where interesting physics
occurs in the cuprates.

DQMC simulations are used to compute various equal-
and unequal-time quantities. For completeness, the doping
dependences of the potential and kinetic energies are explored,
demonstrating that the potential energy is governed by the
double occupancy, as expected, and that the kinetic energy is
controlled by competing tendencies. As expected for the three-
orbital Hubbard model, a plateau corresponding to the Mott
gap develops in the filling versus chemical potential curves as
temperature decreases. Doped holes preferentially reside on
oxygen orbitals, confirming that the model captures behavior
seen in cuprate experiments. In addition, the copper spin-spin
correlation function illustrates the dominance of a tendency
towards (π,π ) spin fluctuations near 0% doping and shows how
the system crosses over from short-range antiferromagnetic to
ferromagnetic correlations in the overdoped system. However,
the density-density correlation function shows no signs of
charge order. The orbitally-resolved spectral functions and
DOS add dynamical information and provide a way to make
connection with PES experiments. The doping evolution from
the undoped to the overdoped system is explored in detail and
demonstrates that inclusion of oxygen orbitals is crucial to
capturing the spectroscopic details at higher energies.

DQMC simulations are compared with the complementary
techniques of ED and CPT to form a more complete picture
of the three-orbital Hubbard model. Despite significant differ-
ences in system size and temperature, the spectral functions
and DOS agree on a qualitative level. The doping dependence
of the orbitally-resolved fillings and local spin moments
computed by DQMC and ED also show close agreement.
The charge transfer gap enables a direct comparison of the
three methods; the indirect gap from DQMC is found to be
significantly smaller than that from ED and CPT. Using the
Mott plateau in the filling as a proxy for the gap points out
a subtlety in interpreting this discrepancy: The interpolated
zero-temperature direct gap from DQMC is similar to the
direct gap from ED and experiment, while the interpolated
indirect gap from DQMC agrees with recent measurements.
Hence, using equal-time quantities, DQMC simulations reveal
the difference between the direct and indirect gaps that is hinted
at experimentally.

As a final note, these calculations reveal the subtlety in
using the single-band versus three-orbital Hubbard model to
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describe the cuprates. The equal-time quantities such as the
filling and spin-spin and density-density correlations remain
qualitatively similar whether oxygen on-site interactions are
included or neglected, suggesting that oxygen correlations are
not significant in energy-integrated measurements and that
the single-band description should be adequate. However, the
spectral functions demonstrate the importance of including
oxygen orbitals when examining dynamical quantities. The
single-band model cannot capture the evolution of orbital
content across the Brillouin zone, which helps to identify
the ZRS as well as the distinct orbital characters at the node
[(π,π )] and antinode [(π,0)]. In addition, the three-orbital
model includes the true LHB, while the single-band model
treats the ZRS band as the LHB and neglects bands further
away from the Fermi level. While the difference between
the single-band and three-orbital spectral functions is not
significant near the Fermi level, as evidenced by the usefulness
of the single-band Hubbard model in describing the cuprates,
studying the system at energies away from the Fermi level for
comparison to experimental techniques such as PES requires
including the oxygen orbitals. Hence the three-orbital Hubbard
model, although more computationally intensive, provides
important information on the interplay between different
degrees of freedom and adds to our understanding of the
cuprates.
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