Magnetic and metal-insulator transitions in coupled spin-fermion systems

R. Mondaini,1,2 T. Paiva,3 and R. T. Scalettar2
1Physics Department, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802, USA
2Physics Department, University of California, Davis, California 95616, USA
3Instituto de Física, Universidade Federal do Rio de Janeiro Cx.P. 68.528, 21941-972 Rio de Janeiro RJ, Brazil

We use quantum Monte Carlo method to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intralayer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Néel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0), the metallic degrees of freedom reduce the ordering temperature. In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a nonmonotonically dependence on JH. For doped lattices, an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.

DOI: 10.1103/PhysRevB.90.144418
PACS number(s): 71.10.Fd, 71.30.+h, 02.70.Uu

I. INTRODUCTION

Over the last several decades, an extensive literature has developed describing Monte Carlo simulations of both localized (e.g., Heisenberg) and itinerant (e.g., Hubbard) models of quantum magnetism. An important subset of these studies has considered situations where the exchange constants Jα or electron repulsion Uα can take on multiple values, with the attendant possibility of quantum phase transitions as the ratio of these energy scales is altered. For example, in the case of the one-fifth depleted square lattice model of CaV4O9, the quotient J/J′ of the exchange constants on the two different vanadium bonds tunes the associated Heisenberg Hamiltonian from a disordered dimer phase, to Néel order, and then back to a disordered plaquette phase [1], lending an understanding of spin gapped behavior in this material. Likewise, bilayer Heisenberg [2] and Hubbard [3] models have a singlet to Néel transition depending on the ratio of values of the inter- and intraplane energies.

In addition to describing systems in which long-range order can be destroyed, multiple Jα and Uα can also give rise to transitions between different ordered states, such as charge density versus spin density wave patterns. Simulations of models with several interaction energy scales are especially relevant to heterostructures, where the growth of distinct sheets of the same, or different materials, offers the possibility of tuned magnetic properties.

In this paper, we present a quantum Monte Carlo investigation of a mixed localized-itinerant magnetic model in which we couple a 2D square layer of Ising spins to several metallic planes. Our interest is both in how, potentially, the additional fluctuations of the free electrons suppress the Ising transition temperature and on how the magnetic layer initiates order amongst the free fermions. We also explore whether the coupling of the metal to the localized spins can open a gap in the electronic spectrum, driving a metal to insulator transition, and the penetration depth of the magnetic order into the metal. Our work is related to simulations of multilayer Hubbard models in which the on-site interaction U can distinguish metallic from magnetic layers [4]. However, by treating the correlated layers as classical, localized spins we are able to explore a greater range of parameter space, and, in particular, to go to lower temperatures away from half-filling of the metallic band where a sign problem would otherwise prevent simulations.

This idea of coupling classical spins to itinerant electrons has been extensively used, e.g., in multiband models of the manganites and iron pnictides where the sign problem similarly precludes treating fully quantum mechanical models [5–7]. Numerical approaches to these models allow easier access to dynamical behavior and hence greater possibility of contact with spectroscopy and neutron scattering experiments [8] than do direct path integral treatments of many-electron systems which require a difficult analytic continuation to get real-time information.

A number of recent experiments have examined electronic reconstruction at the interface of different transition metal oxides using scanning tunneling microscopy with high spatial and energy resolution. Some of these experiments focus on interfaces of paramagnetic metals and antiferromagnetic insulators [9–11]. The Hamiltonian we consider here, in which tight-binding layers couple to classical, localized spins, is the most simple model of such a situation, and will clearly require considerable refinement before being able to make any sort of quantitative contact. Nevertheless, it can lend a first qualitative insight into the sort of trends one might expect, e.g., for magnetic order. Moreover, the study of fluctuating classical spins coupled to fermionic degrees of freedom has recently been suggested as a generally promising approach to move beyond mean-field treatments of interacting electron systems [12], providing further motivation for this work.

The remainder of this paper is organized as follows. In Sec. II, we write down the fermion-Ising Hamiltonian along with a brief summary of the numerical methods employed, and definitions of the observables that characterize the phases. Section III describes the results when the Fermi level is at the band center, first for the case of antiferromagnetic (AF)
Ising spins and then for ferromagnetic coupling, followed by a discussion (Sec. IV) of the effect of doping away from half-filling. A particular interesting charge disproportionation is shown to occur when metallic layers become unequally populated to allow for an optimal magnetic response. Section V presents a conclusion and some future directions of research.

II. MODEL

We consider the Hamiltonian

$$\hat{H} = -t \sum_{i,j,\sigma} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) - \mu \sum_{i} n_{i\sigma} - t_\perp \sum_{i,\sigma} (c_{i\sigma}^\dagger c_{i\sigma}^\perp + c_{i\sigma}^\perp c_{i\sigma}^\dagger) - J_H \sum_{i} S_i^z,$$

where $c_{i\sigma}^\dagger$ ($c_{i\sigma}$) are creation (destruction) operators for fermions of spin $\sigma$ on lattice site $i$ of layer $\ell = 0, 1, \ldots, N_{\text{layer}} - 1$. Our convention is that layer $\ell = 0$ is adjacent to the classical Ising spins. The intralayer hopping $t$ is on nearest-neighbor sites (denoted by $(ij)$) of each layer $\ell$; the interlayer hopping between neighboring fermionic layers ($\ell' \ell$) is $t_\perp$, and the density of fermions is tuned by the chemical potential $\mu$. The geometry of each layer is that of a 2D square lattice of linear length $L$. The remaining degrees of freedom are Ising spins which populate a single layer [13] and are coupled by exchange constant $J$. The Ising spins interact with the $z$ component of the fermion spin $S_i^z = n_{i,0,\uparrow} - n_{i,0,\downarrow}$ in the interface layer $\ell = 0$, via a second exchange constant, $J_H$. The lattice geometry is sketched in Fig. 1. We choose periodic boundary conditions in the planes, and open boundary conditions in the direction perpendicular to the planes. Our results will be for two metallic layers (i.e., $N_{\text{layer}} = 2$), since, as we shall show, such a situation already allows us to address many of the key questions concerning the interface between a magnetic and a metallic layer.

We have chosen $|J|/t = 0.2$ (both signs of $J$ will be studied) so that the temperature scale for the development of correlations in the classical spins is comparable to that in the metallic layer and, consequently, possible competing phases are most readily discerned. There are different ways to understand this. The most simple is to note that, if $J = t$, the 2D square lattice Ising $T_c \sim 2.7 J$ is much higher than typical temperature scales at which short range correlations get more robust for noninteracting fermions in a square lattice. This is because for the half-filled $U = 0$ Hubbard Hamiltonian, short-range antiferromagnetic correlations corresponding to the Fermi wave vector $k_F = (\pi, \pi)$, do not onset until the temperature gets below $T \sim 0.25t$. Even when electron-electron interactions, which are not considered here, are turned on, nearest-neighbor spin correlations do not begin to grow substantially until $T \sim 0.5t$ (for the $U/t = 4$ Hubbard model). Thus, in either case, a choice $|J|/t \sim 0.2$ (Ising $T_c \sim 0.45r$) is required to select classical spin and fermionic spin ordering scales to be roughly equal.

An alternate to Eq. (1) would be to consider continuous planar $\vec{S} = (S_x, S_y)$ or Heisenberg $\vec{S} = (S_x, S_y, S_z)$ spins, with an $\hat{S}_i \cdot \hat{S}_j$ spin-spin coupling between pairs of local spins, and $\hat{S}_i \cdot \hat{S}_j$ spin-spin coupling of local spin to fermion spin [5]. The restriction used here, to a single ($z$) component, has been considered in other problems involving treating electronic correlation, from mean-field approaches [14] to the study of the $t$-$J_z$ model [15]. The choice of Ising spins also ensures a robust magnetic phase transition in which true long-range order occurs at finite $T_c$ in the spin plane. This will be discussed further in the conclusions.

It is worth noting several symmetries of the Hamiltonian (1). Consider first a combined particle-hole transformation $c_{i\sigma} \rightarrow (-1)^{i} c_{i\sigma}$ and inversion of the localized spins ($S_i \rightarrow -S_i$). Here, $(-1)^{i}$ denotes a staggered $\pm 1$ phase taking opposite values on the two sublattices of the bipartite square lattice. This transformation leaves each of the terms in the Hamiltonian, the fermion kinetic energy, the Ising interaction, and the local spin-fermion coupling, invariant. Thus, if $\mu = 0$, the whole Hamiltonian is unchanged, and the lattice is half-filled ($\rho = 1.0$).

The finite temperature properties of the system can be obtained from its partition function and associated expectation values. The partition function is

$$Z = \sum_{\{S\}} e^{\beta J \sum_{i,j} S_i S_j} \cdot Z_t(\{S\}),$$

where $Z_t(\{S\}) = \text{Tr} e^{-\beta (\hat{H}_t + \hat{\mathcal{H}}_i)}$ represents the grand-canonical partition function of the fermionic part of the Hamiltonian for a particular Ising field configuration $\{S\}$. Since the Hamiltonian (1) is bilinear in the fermionic operators, each $\hat{\mathcal{H}}_i$ can be written as the product of a vector of creation operators, a real-valued matrix $\mathcal{M}$ [16], and a vector of destruction operators. The fermion contributions to $Z$ can then be expressed in terms of the eigenvalues $\lambda_{J}^{\sigma}$ of $\mathcal{M}$,

$$Z_t = \prod_{\sigma = \uparrow, \downarrow} \prod_{j} (1 + e^{\beta \lambda_{J}^{\sigma}}).$$

From this expression, it is clear that the summand in Eq. (2) is positive definite and there is no “sign problem” (for any $\mu$). Of course, this is simply a consequence of the fact that the spin field to which the fermions are coupled does not vary in imaginary time, as it would, for example, if $\{S\} = S_i \tau$ were a Hubbard-Stratonovich field used to decouple a
fermion-fermion interaction. The largest computational effort arises from diagonalizing the two \( N \times N \) matrices \( \mathcal{M}^a \) for each update to the configuration of the Ising spins \( S_i \).

An alternate method to the direct matrix diagonalization used in the literature employs a representation of the density of states \( \rho(\lambda) \) in terms of Chebyshev polynomials [17–19]. The moments of \( \rho(\lambda) \) are computed recursively in a way that involves only sparse matrix-vector multiplications. This approach improves the scaling with system size to linear in \( N \), at the cost of a significant prefactor. It also involves an (well-controlled) approximation which is the truncation of the expansion at some maximum order. Here, we use exact diagonalization, as opposed to the Chebyshev method.

The results of the simulations presented below were obtained by averaging over 5–10 independent simulations, each of which was composed of 35 000 Monte Carlo sweeps of the Ising variables. Typically, the linear lattice size \( L \) was varied between 4 \( \leq L \leq 12 \), selecting a geometry with one Ising plane and stacked on top of two fermionic ones, so that \( N = 2 L^2 \).

Expectation values of the Ising variables are averaged in the usual way over the configurations generated in the course of the simulation. For example, to address directly if there is long-range ferromagnetic order in the Ising plane in the case \( J < 0 \), we calculate the fourth order Binder cumulant [20],

\[
B_4(T) = \frac{1}{(N^4)/3(M^2)^2}.
\]

Here, \( M = 1/N \sum_i S_i \) is the magnetization per site. When \( J > 0 \) (the antiferromagnetic case), we replace \( M \) by the staggered magnetization, \( 1/N \sum_i (-1)^i S_i \). Crossings of \( B_4(T) \) obtained for different lattice sizes determine the critical temperature for magnetic ordering of the classical spins. When the interaction \( J_H \) between the Ising and fermionic spins is nonzero, we expect a shift away from the 2D square lattice Ising \( T_c = 2.269|J| \).

Fermionic measurements like the kinetic energy, double occupancy, and spin-spin correlations can be written in terms of combinations of the single-particle Green’s functions, \( G_\sigma^{ij} = \langle c_{\sigma i} c_{\sigma j} \rangle = (\mathcal{M}^{\sigma})^{-1} \), for every configuration of the classical spins. The elements of \( G_\sigma \) are easily obtained from the diagonalization of \( \mathcal{M}^a \), which is already in hand from the update of the spin variables. Further details of the numerical algorithm for coupled classical spin-fermion systems are contained in Refs. [5,17,19].

It is known from related simulations of Hubbard Hamiltonians that fermions with no direct interaction \( U \) have large finite-size effects: the discrete (and often highly degenerate) zero energy levels \( E(k_x, k_y) \) are readily visible in measurements, especially dynamic quantities like the density of states. Although the \( U = 0 \) metal considered here is coupled to classical spins, and hence does have interactions, we still observe significant finite-size effects, especially in the metallic portions of the phase diagram. We overcome this difficulty through the introduction of a small magnetic field \( B = \Phi_0 / L^2 \) along the direction perpendicular to the planes. Here \( \Phi_0 \) is the magnetic flux quanta. With this choice, the intralayer hopping terms are changed by a Peierls-like phase factor

\[
|\langle \psi_{ij} | e^{i \Phi_0 / \Phi_0} \mathbf{A} \cdot \mathbf{d} | \psi_{ij} \rangle|.
\]

We use the Landau gauge in order to set the values of the vector potential \( \mathbf{A} \). This procedure can be considered as an improvement/generalization of “boundary condition averaging” [21–23]. For a more complete description, see Ref. [24]. Nevertheless, it is important to emphasize the distinction of this field, which couples to the “orbital” motion of the electrons (i.e., their hopping) from a Zeeman field coupling to spin which affects magnetic order. The orbital field introduced here reduces finite-size effects by introducing an additional averaging over discrete allowed momenta on a finite lattice. The coupling to the classical spins, on the other hand, produces a Zeeman field for the electrons, whose role in ordering we will determine.

This reduction in the finite-size effects is especially evident in the single-particle density of states,

\[
N(\omega) = \frac{1}{N} \Im \sum_{r} \sum_{j} \frac{|U_{j,r}|^2}{\lambda_j - \omega - i\delta}.
\]

Here, \( U_{j,r} \) are the components of the eigenvectors corresponding to the eigenvalue \( \lambda_j \) of the matrices \( \mathcal{M}^a \), defining the (quadratic) Hamiltonian, and which now contain the phase factors described above. The outer sum averages all the equivalent sites in order to recover translationally invariance. Instead of displaying well-separated discrete delta-function peaks, even for free fermions \( N(\omega) \) becomes nearly continuous on relatively small lattices, and has a form much closer to that of the thermodynamic limit [24]. In our Hamiltonian, turning on \( J_H \) further reduces residual finite-size effects.

### III. RESULTS: HALF-FILLING

Because of Fermi surface nesting with vector \( \mathbf{k} = (\pi, \pi) \), the dominant magnetic instability of the half-filled square lattice Hubbard Hamiltonian is antiferromagnetic. Indeed, the noninteracting susceptibility \( \chi_0(\pi, \pi) \) diverges as temperature \( T \to 0 \) so that, within the random phase approximation (RPA), the ground state exhibits AF order for any finite \( U \). Similarly, in the strong coupling (Heisenberg) limit, the exchange interaction \( J \) favors near neighbor spins, which are antialigned. Since the \( U = 0 \) fermion sheets exhibit this strong AF preference, we expect a rather different response to the coupling of an AF versus a F Ising plane to the metal. We begin with the AF case.

#### A. The antiferromagnetic case

Figure 2 shows the Binder ratio \( B_4(T) \) for two metallic planes of linear size \( L = 4, 6, 8, 10, \) and 12 coupled in each case to a single Ising plane of the same dimensions. The interlayer hopping between the fermionic layers is set to \( t_L = t \) and the coupling \( J_H \) between the local spins and the fermions is \( J_H = 3t \). The Binder ratios for the three lattice sizes cross at a common point, \( T_c \approx 0.62 \), representing a 36% enhancement over the free spin plane result \( T_c \approx 2.27J = 0.454 \) for \( J = 0.2 \).

Similar Binder crossing plots for other choices of \( J_H \) and interlayer hopping yield analogous transition temperatures, which are shown in Fig. 3. The enhancement in \( T_c \) over that of an independent spin plane is nontrivial, because there is a competition between the additional entropy, which results from fluctuations of fermionic variables in the metallic plane and the tendency, noted above, towards antiferromagnetism of the \( U = 0 \) Hubbard model, due to Fermi surface nesting. Evidently, the latter tendency wins: \( T_{\text{Niel}} \) is enhanced. The universality class of the transition to an ordered phase as the
temperature is lowered remains an open question. Our results are consistent with an Ising transition, and we believe that is the most likely scenario, but the available system sizes do not allow us to draw any final conclusion.

There are several additional interesting features in the data. First, the enhancement in $T_c$ is nonmonotonic in $J_H$. The transition temperature reaches a maximum at $J_H/t \sim 3$ for both $t_\perp = 0$ and $t_\perp = t$. Although data are not shown, even for $t_\perp = 5t$ the enhancement of $T_c$ comes back down at large $J_H$. We note that the band structure of the two sheet Hubbard model is $\varepsilon(k_x,k_y) = -2t (\cos k_x + \cos k_y) \pm t_\perp$. The two bands overlap for $t_\perp < 4t$ and have a band gap $t_\perp - 4t$ otherwise. Thus the choice $t_\perp = 5t$ represents the coupling of an Ising spin layer to a band insulator rather than a metal. Figure 3 indicates that the magnetic response of the Ising layer is qualitatively the same in the two situations (metal with $t_\perp < 4t$ or band insulator with $t_\perp > 4t$), although the response of a coupling to a band insulator produces less of an effect, as might be expected. This is likely due to the fact that the bilayer Fermi surface is still nested with $k = (\pi, \pi)$ for $t_\perp > 4t$, even though the density of states at $E_F$ vanishes.

The nonmonotonic behavior of $T_c$ with $J_H$ is reflected also in the evolution of the farthest-neighbor intraplane spin correlation function. $c(i,j) = \langle S_i S_j \rangle$. Figure 4 shows $c(i,j)$ versus $T/t$ for several values of $J_H$ at $t_\perp = t$ on a $8 \times 8$ lattice. This quantity, which in the thermodynamic limit would equal the square of the order parameter, evolves rather sharply from zero to one as $T/t$ is lowered. The position where the switch in values occurs moves to larger $T/t$ as $J_H$ changes from $J_H = 0$ to $J_H/t \sim 3–4$, but then comes back down, in agreement with the maximal $T_c$ in Fig. 3. The inset of Fig. 4 displays the same quantity as a function of temperature and shows, unequivocally, this nonmonotonic effect.

Having described the effect of the interaction $J_H$ between the Ising spin plane and the metal on the ordering transition of the classical spins, we turn now to the issue of the effect of $J_H$ on the metal. We calculate several quantities that characterize both the magnetism and the transport in the fermionic planes. We begin by showing, in Fig. 5, the intraplane kinetic energy $T_c$ as a function of temperature for the different values of $J_H$. In (a), which gives the kinetic energy of electrons in the thermodynamic limit, we turn now to the issue of the effect of the interaction with the Ising spins localizes the electrons, eventually driving their kinetic energy to small values. This trend is monotonic in $J_H$. In (b), the farthest plane from the interface with the Ising spins, we find a much weaker effect, as is expected in the absence of direct contact with the classical spin layer. There is a steady increase of the absolute value of the kinetic energy—the opposite of the effect seen in layer $\ell = 0$. The sharp crossover temperature in the fermion kinetic energy aligns with $T_c$ for the classical spins, as given in Fig. 3.

FIG. 2. (Color online) Crossing plot of the Binder ratio of an AF Ising sheet coupled with $J_H = 3t$ (top) and $J_H = 10t$ (bottom) to two metallic layers. The interlayer hopping between the fermion layers was set to $t_\perp = t$. For $J_H = 3t$, the crossing occurs at $T/t \sim 0.62$, which is well above the critical temperature of a free Ising sheet ($J_H = 0$). $T/t = (J/t) \times (T_c/J_H) = 0.2 \times 2.269 = 0.454$. The behavior of $T_c$ with $J_H$ is nonmonotonic as the critical temperature for $J_H = 10t$ drops to $T/t \sim 0.54$ (see Fig. 3).

FIG. 3. (Color online) Critical temperature $T_c$ (normalized to the 2D Ising value) for the magnetic transition in the Ising spin plane as a function of the interaction $J_H$ with the metal. Several different choices of the hopping parameter $t_\perp$ connecting the two metallic planes are shown. $T_c$ is obtained by the crossing of the Binder ratio $B_4(T)$ for different lattice sizes. (See Fig. 2.) Coupling of the spin layer to the metal enhances $T_c$. The degree of enhancement is strongest when the fermionic layers are most weakly coupled to each other (small $t_\perp$). Lines are guides only.
The double occupancy \( \langle n_i n_j \rangle \) provides complementary information to the kinetic energy, and in particular provides insight into the formation of local moments \((m^2)\) and the possibility of Mott metal-insulator behavior. Specifically, \((m^2) = 1 - 2\langle n_i n_j \rangle\) at half-filling so that vanishing double occupancy implies a well-formed moment on every site, and a nonzero double occupancy implies moments, which are partially suppressed by charge fluctuations. \(\langle n_i n_j \rangle(T)\) is shown in Fig. 6. Data for plane 0 and plane 1 are shown in the top and bottom panels, respectively. In both cases \(\langle n_i n_j \rangle\) takes on its uncorrelated value \(\langle n_i n_j \rangle = \langle n_i \rangle \langle n_j \rangle = 1/4\) for \(J_H = 0\), as should be the case for a metal with no interactions. In plane 0, there is a monotonic suppression of double occupancy with \(J_H\), and hence a steady development of local moments. By the time \(J_H = 4\), double occupancy has decreased to \(\langle n_i n_j \rangle \sim 0.05\) implying \((m^2(T)) \sim 0.90\). The reason for this behavior is clear: the classical Ising spin \(S_z\) acts as a local magnetic field for the fermions on site \(i\) in plane 0, enhancing(suppressing) the occupation of the electron spin occupation parallel (antiparallel) to it. As we shall see, this induced moment formation aids in magnetic ordering.

In plane 1, more isolated from the classical spins, the double occupancy is barely modified from its \(J_H = 0\) value. Nevertheless, despite exhibiting only a small effect, the onset of deviations provides a nice signal of the Neél transition temperature. Indeed, the nonmonotonicity of \(T_{\text{Neél}}\) observed in Fig. 3 is reflected in a similar nonmonotonicity in the double occupancy in fermionic plane 1. Presumably, the large response of the double occupancy to the effective field in plane 0, which is evident far above \(T_{\text{Neél}}\), masks the more subtle signature of the onset of long range order.
appearing in Fig. 3. Again, the plot is separated in (a) and (b) corresponding to the planes 0 and 1, respectively.

While plane 0, which directly interacts with the Ising spins, becomes easily “saturated” ($m_{af,z} \rightarrow 1$) with the increase of $J_H$, the fermions on plane 1, farther from the classical spins, are less easily aligned. For smaller values of $J_H / t$, at $\ell = 1$, the effect is very small (note the vertical scale) a slight decrease in double occupancy and then a recovery towards the $J_H = 0$ value which begins at $J_H / t \gtrsim 2$.

We turn now to the issue of how the coupling to the classical Ising spins affects the density of states $N(\omega)$ of the metal. There are two separate issues to consider. First, even at high temperatures, the fluctuating classical Ising spins act as a random site energy $\pm J_H$ for the fermions. In the limit $t = t_1 = 0$, we expect $N(\omega) = \frac{1}{2} (\delta(\omega + J_H) + \delta(\omega - J_H))$. Nonzero hopping will broaden this distribution. Second, as $T$ is lowered, the Ising spins no longer fluctuate randomly but instead, for $J > 0$, form an ordered antiferromagnetic pattern. This staggered site energy opens a gap in the fermionic spectrum. Figure 9 shows $N(\omega)$ for $L = 12$ and $t_1 = t$. The left panels give $N(\omega)$ in plane 0 for fixed $J_H / t = 3$ [the density of states for individual planes is obtained by the appropriate restriction of the spatial sum in Eq. (4)] and decreasing temperature. Both features discussed above are present: peaks in the density of states at $\pm J_H$ at all temperatures, and, near $\omega = 0$, an insulating gap which opens only below the Ising $T_c \sim 0.615$ (Fig. 2) for $J_H / t = 3$. The insulating gap is substantially less than one might expect from a strictly rigid staggered site energy. Presumably, this reflects some residual fluctuations of the Ising spins.

In the right panels of Fig. 9, the density of states in the plane further from the interface is shown. In the topmost panel Fig. 9(e), where $J_H = 0$, we recover the analytic result of the antiferromagnetic structure factor $S_1^z$ for planes 0 and 1, in (a) and (b), respectively. Here, $t_1 = t$ and $T / t = 0.10$. A parabolic fit is used to obtain the value in the thermodynamic limit, $m_{af}^z$.
FIG. 8. (Color online) Antiferromagnetic order parameter as a function of \( J_H \) for temperature \( T/t = 0.10 \). In (a) for plane 0 and in (b) the same for plane 1. Plane 0 exhibits a rapid and monotonic saturation with \( J_H \). \( m^{(1)}_{\perp} \) in plane 1 first increases with \( J_H \) and then falls.

B. The ferromagnetic case

The antiferromagnetic tendency of tight-binding electrons on a square lattice at half-filling can be understood from a weak coupling perspective. The Fermi surface is nested at the antiferromagnetic ordering vector \((\pi, \pi)\) and, as a consequence, the noninteracting susceptibility

\[
\chi_0(q) = \frac{1}{L^2} \sum_{k} \frac{f(\epsilon_k) - f(\epsilon_{k+q})}{\epsilon_{k+q} - \epsilon_k},
\]

diverges there as \( T \to 0 \). This reasoning suggests \( T_c \) might be suppressed for ferromagnetically coupled Ising spins, whose ordering wave vector conflicts with what the half-filled metallic fermion spins prefer.

Figure 10 shows the transition temperature \( T_c \) of ferromagnetically coupled Ising spins in contact with a half-filled metallic layer. It confirms that \( T_c \) is suppressed, consistent with the qualitative argument suggested above, and in contrast to the enhancement seen in the antiferromagnetic case of Fig. 3. The maximal suppression of \( T_c \) occurs at \( J_H/t \approx 4 \), and reveals a lowering of \( T_c \) by almost a factor of two. \( T_c \) ultimately recovers, but only for very large values \( J_H/t \gtrsim 5 \).

When ferromagnetic order is present in layer 0, we can ask whether it will induce similar order in the more distant layer 1, something which occurred with antiferromagnetic coupling \( J \). We calculated the ferromagnetic structure factor \( [S^2 = (1/L^2) \sum_{ij} (S^x_i S^x_j)] \) for the same values of interaction \( J_H \) considered in the previous case. A similar finite-size analysis, Eq. (5), was performed, the order parameter \( m_f \) for ferromagnetism in each of the fermionic planes was obtained as function of \( J_H \) for low temperature, and is shown in Fig. 11. Ferromagnetic order is induced in both planes, although \( m_f \) is an order of magnitude smaller for plane 1 than for plane 0, in contrast to the antiferromagnetic case where there was only a factor of two difference.

As they order, the fermions in direct contact with the Ising spins (\( \ell = 0 \)) start to localize as seen in their reduced double occupancy [Fig. 12(b)]. For any \( J_H \) and \( T \), the double occupancy for \( \ell = 1 \) is basically unchanged from its uncorrelated value 1/4 [Fig. 12(c)]. This is similar to what happened in the AF case of Fig. 6(b). The behavior of the \( \ell = 0 \) kinetic energy [Fig. 12(a)], on the other hand, is quite different from the AF case (Fig. 5). Although in both cases there is a systematic suppression with \( J_H \), in the ferromagnetic
case the magnitude of the kinetic decreases as \( T \) is lowered for \( J_H/t \gtrsim 3 \). This is likely a consequence of the Pauli principle; in the F case, ordering of the Ising spins promotes polarization of the fermions in layer \( \ell = 0 \) and as this polarization becomes more and more complete the fermions can no longer hop on the lattice.

Finally, we analyze the influence of the magnetically ordered plane of Ising spins on the metallic density of states, Fig. 13. Similar to the AF case (Fig. 9), there are peaks at \( \omega \sim \pm J_H \) for layer \( \ell = 0 \). The increase of \( J_H \) induces a pseudogap, however the insets to (c) and (d) indicate \( N(\omega = 0) \) remains finite, in contrast to the AF case. The dashed line gives the density of states for a single fermionic plane coupled to a perfectly ordered ferromagnetic arrangement for the Ising spins, which is derived from the dispersion \( E(k) = -2t[\cos(k_x) + \cos(k_y)] \pm J_H \). The DOS for plane \( \ell = 1 \) is approximately given by that of a fermionic bilayer with \( t_{\perp} = t \). The effect of \( J_H \) is to slowly decrease the distance between the van Hove singularities at \( \omega = \pm t_{\perp} \). This trend would then ultimately result in a single van Hove singularity at \( \omega = 0 \) similar to that of an isolated free fermion plane. Increasing \( J_H \) helps “disconnecting” the planes \( \ell > 0 \), which are not right at the interface. Similar decoupling can be seen in layered Hubbard models [4].

IV. RESULTS: DOPED LATTICE

In the previous section, we analyzed the influence in the critical temperature of the Ising plane after attaching a metal to it. Its enhancement(suppression) could be explained by
the preferred wave-vector of the ordering in this metallic region. Since there is a natural tendency for short-ranged antiferromagnetic order for free fermions in a tightly-binded bipartite lattice at half-filling, these fermions and the Ising spins act cooperatively in order to boost the critical temperature of the antiferromagnetic Ising model. The same argument shows that when the Ising spins have a ferromagnetic coupling, the critical temperature is reduced, once again due to the antiferromagnetic tendency introduced by the contact with the fermionic spins. We now examine the doped lattice where the dominant AF response in the noninteracting region. Since there is a natural tendency for short-ranged the critical temperature of the antiferromagnetic (ferromagnetic) Ising model is considered in a clear contrast with the half-filled case.

However, when $t_\perp = 0$, so that only one metallic plane is coupled, doping appears to change the behavior of $T_c$, quite substantially. While for small values of $J_H$ the increase (decrease) of the critical temperature of the antiferromagnetic (ferromagnetic) Ising model is the same as for $\rho = 1$, once higher values of $J_H$ are reached ($J_H/t \sim 4$ in the AF case and $J_H/t \sim 10$ in the F one) the scenario changes. An antiferromagnetic Ising plane has its critical temperature decreased by the coupling with the free electron spins, while in the ferromagnetic case the critical temperature is enhanced. This is not completely unexpected since, as commented earlier, the peak in $\chi_0(q)$ moves away from $(\pi,\pi)$ so that the fermions in the metal no longer so strongly favor AF order.

The reason that this does not happen in the two layer case $t_\perp = 1$ is that the second metallic layer $\ell = 1$ acts as a charge reservoir for the layer $\ell = 0$ at the interface. That is, the electron density is imbalanced, as seen in Fig. 15. Plane $\ell = 0$ adjacent to the magnetic layer has a tendency to become half-filled, leaving the farthest plane less populated.
Each of the fermionic planes at temperatures close to where the bilayer with interplane hopping is big enough that the fermions become a band insulator, namely a metal, with the interlayer hopping in the fermionic sheet made large enough that the fermions become a band insulator, namely a metal.

For larger values of $J_H$, the occupations tend to 1.0 and 0.75, for $\ell = 0$ and $\ell = 1$ respectively. Throughout this evolution the total density is preserved at $\rho = 0.87$. The half-filling of layer $\ell = 0$ allows for the enhancement (supressing) of the critical temperature of an antiferromagnetic (ferromagnetic) aligned Ising plane.

V. CONCLUSION

We studied magnetic order at the interface between an insulator and a metal using quantum Monte Carlo method. Specifically, we considered a 2D Ising plane coupled to a lattice of noninteracting (metallic) fermions. In the case of an antiferromagnetic Ising model, and a half-filled metal, the coupling enhanced the Ising critical temperature. Antiferromagnetic order was also induced in the metal, both in the layer immediately at the interface with the classical spins and also deeper within. This enhancement occurs even in the case where the interlayer hopping in the fermionic sheet is made large enough that the fermions become a band insulator, namely a bilayer with interplane hopping $t_\perp$ bigger that $4t$.

In contrast, the critical temperature of ferromagnetic Ising spins is reduced by the coupling to the fermions at half-filling. We attribute these distinct effects to be a consequence of the perfect nesting of the square lattice fermion tight-binding Hamiltonian, which favors antiferromagnetism. Indeed, studies of the doped lattice demonstrate that the system’s desire to optimize “magnetic consistency,” that is, to have an AF metallic response when the magnetic layer is AF, is so great that, if available, charge will be pulled from a second magnetic layer into the interface metallic layer so that half-filling is maintained there. In the absence of such a reservoir, the AF transition is suppressed by this mismatch with the metallic ordering wave vector.

A central consideration of our work has been the consistency of the order in the classical spin plane from the ordering tendency of the metal. In “unfrustrated” cases where the metal and local spins prefer the same wave vector, transition temperatures are enhanced, and vice versa. Recent experiments [27] have explored the importance of these considerations on the decoupling of surface and bulk magnetism in UO$_2$. The distinct surface behavior observed is attributed to the different symmetry of its ordered phase relative to the bulk. Other 3D systems in which 2D order occurs due to frustration are certain of the doped cuprate superconductors [28,29]. In individual CuO$_2$ sheets, stripes of $d$-wave order coexist with intervening antiferromagnetic stripes. The orientation of the $d$-wave phases alternates from stripe to stripe in a given layer. In adjacent CuO$_2$ sheets, the same stripe pattern occurs, but, because of structural effects, the stripes are oriented perpendicular to the neighboring sheet. The result is that the intersheet Josephson coupling tends to cancel and 2D superconductivity is observed.

A natural progression of the work reported here would be to consider the case of continuous XY (planar) or Heisenberg spins. As previously noted, in this case an isolated 2D spin plane has no transition to long-range order, owing to the Mermin-Wagner theorem. One interesting question will be how the less robust power law correlations that develop at low $T$ in the XY case are qualitatively affected by coupling to the metal. For $J < 0$, where we find the Ising $T_c$ suppressed, will the Kosterlitz-Thouless transition survive? Because the fermion determinant depends only on the spin degrees of freedom in the interface layer, adding additional spin layers has relatively little computational cost. Thus it is feasible to study 3D lattice Heisenberg spins, which has a finite ordering temperature, coupled to one of more metallic layers.

ACKNOWLEDGMENTS

This work was supported by DOE DE-NA0001842-0 and by the Office of the President of the University of California. Support from CNPq (T.P. and R.M.), FAPERJ (T.P.), and the CNPq Science Without Borders project (R.S.) is gratefully acknowledged.


[13] We focus here on the penetration of the classical spin order into the metal and, hence, have a single spin layer and multiple metallic layers.


[16] This real-valued matrix turns into a complex one once we define the complex phases in the hopping terms to reduce the finite-size effects.


[26] Finite-size scaling of the farthest distance spin correlation can also be done, and leads to the same value for the order parameter. In general, the structure factor has the advantage of smaller statistical error bars, but the disadvantage of larger finite-size effects [a bigger value of the parameter A in Eq. (5)].

