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Ferromagnetism in an orbitally degenerate Hubbard model
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We study the magnetic phase diagram of a one-dimensional, orbitally degenerate Hubbard model using the
Lanczos algorithm to project out the ground state. Using lattices larger than those previously explored with
diagonalization approaches, we find a phase diagram which is in much better agreement with a strong coupling
analysis. In addition to determining the phase diagram by calculating the spin sector of minimum energy, we
also show results for the spin-spin correlations and participation ratio, which further characterize the magnetic
order and the itineracy of the electrons. We then describe results for the case when the intersite hybridization
is different for the two orbitals[S0163-18287)04818-3

I. INTRODUCTION of the difficulty with which the single band model supports
spin alignment.

The spontaneous breaking of rotational symmetry to a fer- There are also additional rigorous results pertaining to
romagnetic state is a difficult problem in statistical physics.ferromagnetism in the Hubbard model. The Lieb-Mattis
Nevertheless, the occurrence of a ferromagnetic transition iheorem rules out ferromagnetism in the one-dimensional
well established in spin models like the Isin¥Y, and (1-D) Hubbard modet? That the 2D Hubbard model cannot
Heisenberg Hamiltonians, when the dimension is sufficientlyexhibit long range magnetic order at finite temperature is a
high, and indeed a combination of analytic and numericaFonsequence of the Mermin-Wagner theorert.Ferromag-
work has quantitatively characterized the details of the ordeRetism has been established in lattices with flat bands, espe-
of the transitions, the critical temperature, and criticalCi@lly those arising on bipartite lattices with different num-
exponent<. However, many ferromagnets, like the transition Pers of sites on the two sublatticEs® Besides these
metals, are not well described by such spin systems. InsteafEn€wed studies of the simplest Hubbard model, a number of
their transport properties exhibit features which can only bd€cent papers have focused on the effect of including addi-
understood within the context of a band model where thémnal off-diagonal interactions such as bond-charge and ex-

: : : o hange term$®—18
electrons are delocalized. While calculations within the local . . .
i . S . : The suggestion that orbital degeneracy plays a crucial role
spin density approximation have yielded important.

o 23 ! . . in itinerant ferromagnetism, a view supported at the most
insights;™ the precise nature of the correlations reSponS'bleprimitive level by the observation that ferromagnetism oc-
for such itinerant ferromagnets is still an open issue.

- .curs most frequently in metals withandf electrons, has a
For such itinerant ferromagnets, an alternate to eleCtron'ﬁistory beginning with Van Viec® and Slater, Slater, and
structure calculations is to study correlation effects givingk qster20 This picture was refined by Rof ’Kugel é\nd

rise to magnetism in tight binding Hamiltoniah&® The Khomski22 and Cyrot and Lyon-Caef, who emphasized
simplest such model, the single-band Hubbard Hamiltonianshe simultaneous appearance of orbital ordering in which the
consists of one orbital hybridized with near neighbor hop-gccupation of the orbitals alternates, along with ferromag-
pingt, and an on-site repulsiod between electrons of op- netism. This analytic work was within the random phase ap-
posite spin. The existence of amtiferromagneticregime  proximation and mean field theory applied to strong coupling
near half-filling is well established by a number of numericalversions of the model. Many of the essential features of the
and analytic techniquésThe single band Hubbard Hamil- picture were verified by exact diagonalization and Monte
tonian also exhibits a ferromagnetic phase at latd& Carlo studies of Gill and Scalapirf8.However results from
within mean field theory. Unlike antiferromagnetism, this diagonalization of small clusters and strong coupling argu-
phase has not been observed numerically, and hence therenients were only qualitatively in agreement.
much less certainty concerning the validity of this Hartree- In this paper we will explore this specific issue of ferro-
Fock prediction of ferromagnetism than its antiferromagnetianagnetism arising within a multi-orbital Hubbard Hamil-
counterpart. tonian with a Hund’s rule coupling. In particular, we will
What is rigorously known concerning ferromagnetism?extend the numerical work of Gill and Scalapino to larger
Nagaoka established that in the limit of infinligt, the state lattices and resolve the disagreement between cluster and
with a single hole doped into half-filling is ferromagnetic. strong coupling calculations. We will also present new re-
The question of extending this result to finite hole densitysults showing how the participation ratio can distinguish the
has been addressed recently in a number of p&mend,itis  phases on the two sides of the ferromagnetic region. Finally,
currently knowr that ferromagnetism is unstable for doping we will determine the phase diagram in limits where the
6> 6,=0.25 and interactions) <U_ = 78t. That an interac- intersite hybridization is different for the two orbitals, as
tion strength an order of magnitude greater than the bandwould occur, for example, in a multiband model consisting
width, W=8t, is necessary for ferromagnetism is indicative of extended and localized orbitals. The organization of this
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FIG. 2. Some of the possible configurations of neighboring sin-
gly occupied sites. The second-order lowering of energy dudgo
indicated. The lowest energy is associated with a ferromagnetic spin
configuration with opposite orbitals being occupied on the two ad-
jacent sites.

FIG. 1. The six possible statés, ;) of two electrons on one site
(with two orbitalg. The first four states are not connectedHbyto
any other states, if=0, and the energy listed below each state is
the diagonal part of, (n,¢/H|n,s). The last two states are con-
nected to each other by the Hund'’s rule couplihgand the ener-

gies listed below them are the two possible eigenenergies. electron spins are parallel, then the energy isJ, which is

positive since we requir¥>J. If S,=0, the electron spins

aper is as follows: In Sec. Il we write down the Hamiltonian &€ antiparallel, and the energie_s bréwith a degenerac_y of
haper 15 as ws e W ron 2), andV=J. TheS,=0 state with energy/—J is the third

and discuss its strong coupling limit and also the computa®

tional approach we use. In Sec. Ill we present results for th§oMPonent of the spin-one triplet together with Be=+1

symmetric case where the hopping of electrons between siteates. The MO possible choices thorbitﬂl qlrj]antum nqmber
in each orbital is identical, and in Sec. IV we take up the®an be considered as a pseudospifihen the three remain-

situation where one set of orbitals is more localized than th¢'9 itatgs, F}NO, of energy, a”‘?' one of energy'+J, form
other. Section V contains some concluding remarks. the “orbital” triplet L=1. Orbital symmetry thus requires
U=V+J.

The key point of this single-site analysis is that the
Hund’s rule couplingd favors “atomic ferromagnetism,”
We consider a specific Hamiltonian which incorporatesS=1, that is alignment of the moments of two electrons on
orbital degeneracy and Hund’s rule coupling, the same site. We are, however, interested in the “quarter-
filled” case, (n)=1. In such a situation where there is on
N N average a single electron per site,tat0 all levels are de-
H:—ti;s (dis 1psdinst dmsdi+1>\s)+U% NixtNix ) generate. We can, however, put two such singly occupied
o sites adjacent to each other and analyze the energy to second
order in the hopping (Fig. 2). Such an analysis is what leads
+V_2 ”ilsnizs'—JZ df1o0i 160 g iz (D to the conclusion that antiferromagnetic correlations are
ss ss dominant in the single-band Hubbard model at half filling,
Hered,,s (df,) are destructioricreation operators for fer- and to the familiar strong coupling treatment based on the
mions of spirs at sitei and in orbital\ =1,2.t is an intersite  SPiN-1/2_ antiferromagnetic Heisenberg Hamiltonian. How-
hybridization between sites in a 1D chain. WetseD.25, so ~ €Ver, in the case of the orbitally degenerate model, the situ-
that the bandwidthW=4t=1 is our scale of energyJ is an ation is more complicated, and ferromagnetism with orbital

on-site repulsion between electrons of opposite spin on th@rdering is favored, as seen in Fig. 2. _ _
same site and in the same orbitsl.represents the on-site This observation that ferromagnetism is associated with

interorbital repulsion. Finally] is a Hund’s rule coupling. the formation of an orbital superlattice was first made by
Note that, as written) contains a spin diagonal term which Rotlf* and formalized by Cyrot and Lyon—Cﬁéﬁand also
is an attractive interaction between electrons on different or?Y Kugel and Khomskif One introduces a "pseudospin
bitals. Thus we requir®>J so the total interorbital interac- operatorL with the proPe”y th"_“t tqkes a fermion n or-
tion is repulsive. Besides the parameters in the HamiltoniarP!tal 2 and transports it to orbital 1, takes a fermion in
the physics is also determined by the filling per ¢itg and ~ Orbital 1 and transports it to orbital 2, and=x3 for fer-
the temperaturd. In this paper we will be concerned with Mions in orbitals 1 and 2, respecnvely.. Then the Hamiltonian
ground state propertie =0, and will also focus on quarter- Ed- (1) €an be written at strong coupling as

filling (n)=1. While systems of higher dimensionality are

IIl. MODEL AND COMPUTATIONAL APPROACH

c!ea_rly the_on_es Qf most interest, we can nevgrthele;s get H :E 4_t2 (88 .1~ L) (LZLZ + 1)
significant insight into the effect of the various interactions eff — =~ "y +1 4kttt 4
even in 1D.
It is useful to consider the cage=0 since this is the 2t2 . . .o

. . - - . + (S*Sii1+ H(LrLi— D)
starting point for a strong coupling analysis and also since V-1 +1taARiT il 4
certain relationships between the interaction parameters )
U,V,J are most clearly evident. Fa=0 the Hamiltonian 27 o 2 1ary 2 2 1

. . i ; _ - (S$*S 1— HrLaz, -3
describes a set of decoupled sites. Let us consider a site with V+J +1 o 4JL=i=itl 4

two electrons. The six possible configurations, and their as-
sociated energies, are shown in Fig. 1S)J + 1, that is the — 3 (L L L L ). 2
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Gill and Scalapino have studied this strong coupling modetlominated by a few magnetically ordered configurations,

with a quantum Monte Carlo methG8A similar model has  then will be relatively small. On the other hand, in a dis-

recently been used in order to understand the magnetic proprdered, itinerant phase, we expétto be large?’

erties 0fCgq.2° We can also explicitly measure the spin-spin correlations
While considerable understanding of the original itinerantand their Fourier transform, the structure factor,

electron Hamiltonian, Eq.1), can be gained by considering

this strong couplindH¢, a standard approach to the oppo- c(j)=(tholsAD)s(I +)| o),

site, weak coupling, limit is the RPA. In the case of the

single-band model, the resulting “Stoner criterion” is that a -

magnetic instability occurs atl yo(q)=1. Near half-filling, SAq)=2 c(j)e'. 4

xo(Q) is largest at momenturg= 7, that is, antiferromag- .

netic order is expected. Indeed, for a square lattice in tWHeres,(1)=nj;; — N1 + Ny — Ny, is the totalz component

dimensions yo(, ) diverges asT—O0 [as If(T)] indicat-  of spin, including both orbitals. We expectj) to be posi-

ing that antiferromagnetic order exists all the way down totjve for different separationg in a ferromagnetic phase, to

U=0. For other fillings, at large), the uniform susceptibil- alternate in sign in an antiferromagnetic phase, and to be

ity x(0) is largest. At zero temperatung,(0)=N(er) and  “small” as j increases in a disordered, paramagnetic state.

the Stoner condition for ferromagnetism UtN(eg)=1. In We expect the structure fact8,(q=0) to become large in

the model withm degenerate orbitals, the analogous criterionthe ferromagnetic phase, while an increas8&,ifiq= ) will

for magnetic ordering iU+ (m—1)J]N(eg)=1. Thus signal antiferromagnetism. Of course in one dimension, we

within this weak coupling treatment it is also apparent thatdo not expect any true long range order. To analyze the

the Hund'’s rule coupling favors ferromagnetism by allowing nature of the ground state in detail would require studies of

ordering at a lowelJ. large lattices and a determination of the exponent describing
Results in the intermediate coupling regime require othethe power law of the decay af(j) and other correlation

analytic or numerical methods. Our calculational approach isunctions?® Here we shall confine ourselves to examining

Lanczos diagonalizatioff. This technique and its variants the qualitative behavior af(j), for example the sign of the

have been widely used recently to study the properties ofiear neighbor correlations. However, we shall find this

correlated electron systems on small clusters, especialligrees well with the nature of the phase diagram inferred

those models which cannot be easily analyzed using thfom the energy and participation ratio.

guantum Monte Carlo method. The Lanczos algorithm in-

volves the explicit application of the Hamiltonian to states in

the Hilbert space. CPU time and storage grow exponentially

with system size. Here we report on studies of four- and We first present results for the case when the hopping

six-site, two-orbital, quarter-filled systems where the maxi-parametet is the same for each type of orbital. All data in

mal Hilbert space dimensioB, exploiting certain symme- this and the following section are for six sites, unless other-

tries of H, is D=48 400. Eight-site systems would have awise indicated.

Hilbert space of dimension exceeding 3.3 million. In Fig. 3(a) we show the ground state energy in different
The Lanczos algorithm provides the ground state energgectorsn;—n, of total S,. We observe there a range of

Eo and wave function|iq). We will infer the nature of Hund’s rule couplings).;<J<J., where the different sec-

| o) through a number of different measurements. First, bytors have the same ground state energies. As remarked in the

calculating the energy in different sectors of tdda| we can  previous section, such a degeneracy is a signature of a fer-

determine whether the ground state is ferromagnetic. Specifromagnetic ground state with total sga¥ 0.

cally, if the ground state energies obtained by restricting to We can get further insight into the nature of the ground

different sectors of totab, are degenerate, then this meansstate by examining the sign of the near neighbor spin-spin

that| ) has nonzero total spin, a ferromagnet. The reason isorrelation functionc(1)<O0 is characteristic of an antifer-

that the Lanczos algorithm gives the energy of the lowestomagnetic phase, while(1)>0 is characteristic of ferro-

state not orthogonal to the starting wave function. Since thenagnetism. In Fig. 4 we see tha{l) is negative for

total S, commutes withH, a starting wave function of total J<J.; and positive forJ.;<J<J.,. Finally, c(1)~0 for

S, nonzero will have no overlap with the ground state unless)>J.,, suggesting a weakly ordered, paramagnetic phase.

the ground state has nonzero spin. On the other hand, if thEhe behavior of the structure fact@rot shown is consistent

ground state is not a singlet, different tofl starting wave  with this. ForJ<J.;, the structure facto8(q) is peaked at

functions will typically overlap the ground state, and all will momentumg= 7, while it is peaked at momentugp=0 in

Ill. RESULTS: SYMMETRIC HOPPING

yield the identicalE, after the Lanczos iterations. the intermediate regiod.;<J<J.,. Of course, the local
The nature of the ground state can also be inferred bgpin correlation only contains qualitative information. We
measuring the participation ratio, need to exhibit the behavior @f(l) asl—«, or perform a
scaling analysis of the structure factor, before rigorously de-
e 1/2 ()] 3 termining the nature of the dominant correlations in the sys-
i 0 ' tem. Such detailed analysis is not possible for the system

sizes considered here.
Hereyy(i), i=1,... D, are theD components of the wave We next consider the behavior of the participation ratio.
function in the basis we have chosen for the Hilbert space. IAs we have discusse® measures the number of different
not many components are nonzero, for exampléyff) is  states in our basis which have a significant component in the
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7 FIG. 4. The near neighbor spin-spin correlation functi¢h) as
(@) a function of Hund's rule couplingd. Here V/4t=12 and
0.20 —— 11— U=V+J. ¢(1) is negativdantiferromagneticfor J<J.,, positive

(ferromagnetit for J.;<J<J.,, and relatively small(paramag-
netic) for J>J.,. The valuesl;;=4.8 andJ.,=11.1 which bound

0.15 1 - the ferromagnetic region are in good agreement with the energy
degeneracy measurement of Fig(V@rtical dashed lings

0.10 7 pling phase boundaries. As discussed by €ilthe lower
phase boundary is obtained by equating the energies of the
ferromagnetic configuration of Fig(& with the sum of the
antiferromagnetic energies of Figgb2and Zc). This gives
1 =~y ' the conditionJ=V?/(U+V), which along withU=V+J
000Ny P yields the lower phase boundady,=(v2—1)V of Figs.
0 2 4 6 8 10 12 6(a) and Gb). Ferromagnetism becomes unstable to a disor-
() J dered phase when the energy-J which induces moment
formation by preventing double occupation of a difegs.

FIG. 3. (a) The ground state energy per site as a function of1(@) and Ib)], becomes of order the bandwidtit.4This
Hund’s rule couplingd for different totalS,. HereV/4t=12 and  Yields the upper bounday=V—4t of Figs. §a) and &b).
U=V+J. (b) The same aga) except the difference in energies ~ The four-site calculation, originally done by Gflland
between the 6-0 and 3-3 sectors is shown. Wheh,=0, the  reproduced by us, agrees qualitatively with the strong cou-
ground state is ferromagnetic. pling analysis. However, as shown in Figbh the agree-

ment is much improved if a six-site cluster is considered, as
expansion of ). Since we work in a basis of eigenstates of we have done here. It would be interesting to do the calcu-
the occupation numbers, perfectly ferromagnetic or antifertation for a yet larger eight-site cluster to ensure that the
romagnetic states can be represented by a single basis vect@jreement remains good.
and henceP=1. Of course, the existence of quantum fluc-  We can also perform the calculation for a case when the
tuations in the form of the nonzero hopping paramétere-
cludes that these be eigenstates of the Hamiltonian. Never
theless we expect th& might remain small for magnetically
ordered phases. On the other hand, an itinerant phase will b
characterized by a much larger number of basis vectors con
tributing to the construction of the ground state. This expec- .
tation is borne out in Fig. 5, where we see tfais small
both for J<J.;, the region which the measurement of
c(1l) suggested might be antiferromagnetic, and for
J.1<J<J.,, the region that bothE, degeneracies and
c(1) suggested might be ferromagnetic. For a valuel.,
consistent with that determined in Figs. 3 and 4, the partici-
pation ratio rises abruptly.

All three measurements, the ground state energy, spin cor N S N T SR S
relations, and participation ratios give consistent locations 0 2 4 6 8 10 12
for two critical values of the Hund’s rule couplingwhere J
magnetic transitions occur. We can put together sweeps or
J at different values oV to construct a phase diagram. For ~ FIG. 5. The participation ratio as a function of Hund’s rule
weak coupling, no magnetic order occurs, butV@4t large  couplingJ. HereV/4t=12 andU=V+J. In the magnetically or-
there exists a ferromagnetic region. This region is exhibitediered phases? is small. P increases dramatically in the paramag-
for a four-site lattice in Fig. @), along with the strong cou- netic phase.
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FIG. 7. The regime of ferromagnetism ftf=«. The lower
strong coupling phase boundary would belatt=0.

12

10

orbital A\=1 comprised an extended conduction band, and
N=2 a set of localized orbitals. Such different choices of
t, are, of course, considered in the “Anderson lattice”
S Hamiltonian.(However in that model there is an interorbital
hybridization on each site, as opposed to the interorbital re-
pulsion and Hund'’s rule coupling considered here, and the
dominant magnetic ordering is antiferromagneti€igures
8(a) and 8b) show the regions of ferromagnetism for cases
when the orbitals\=2 do not hybridize at all{,=0, and
when the hybridizatiort,= 0.5t .

Results ford.; andJ., for V=12 and a range of values of
t,/t; are given in Fig. 9. The ferromagnetic region expands
somewhat at the expense of antiferromagnetic ordéy &

o JL /S AP I TR IR BTEE turned on from zero, the position df, shifting by about
0 2 4 6 8 10 12 25%. We can understand this by a slight generalization of
strong coupling analysis of Gill and Scalapino to include

(b) V/4t different hopping parameters in the diagrams of Figb)-2

2(d). If t,=at; we find Jgy /V=[1+a?—1]/a? This
analysis predicts about a 20% decreasé infrom «=0 to

FIG. 6. The ground state phase diagram inferred from the dat@:l, in reasonable agreement with the numerical work.
of Figs. 3—5. The shaded region &fV is physically forbidden. Meanwhile, the upper ferromagnetic-paramagnetic
The hatched region is ferromagnetic. The dotted and dashed "neﬁ‘oundary\] , is even less sensitive to the hybridization
are the strong coupling boundari¢a). Four sites(b) Six sites. Our shifting onlcy by 5% or so as, varies from describing com-
four-site phase diagram is identical to that obtained by Gill and . - e .

letely localized orbitals to a hybridization equaltta This

Scalapino using diagonalization. The six-site phase diagram re re[2 . . . -
P g dlag P g puIS easily understood since the orbitaF1 bandwidth re-

;ﬁrr:;sczlsclglgltfigglnt improvement of agreement with the strong co mains fixed atW; =4t and can drive the destruction of the
moments independent of the value of the bandwMth of

repulsion for electrons of opposite spin on the same site anthe second orbitak = 2.

orbital is infinite. In this case, as shown in Fig. 7, the region

of ferromagnetism is considerably enhanced, but the agree-

ment with the cluster and strong coupling calculations re- V. CONCLUSIONS

mains good.

8

J/4t
6

In this paper we have determined the phase diagram of an
IV. RESULTS: ASYMMETRIC HOPPING orbitally degenerate tight binding Hamiltonian which in-

cludes both intra- and interorbital repulsions and a Hund'’s

Here we present results for the case when the intersiteule coupling. We have shown that the previous agreement

hybridizationt depends om, as might occur, for example, if between diagonalization and strong coupling calculations



55 FERROMAGNETISM IN AN ORBITALLY DEGENERATE . .. 14 973

10

J/At

J/at

0 0.2 0.4 0.6 0.8 1
(@) /1,

11.8

I BRI U BT A SR B!
2 4 6 8 10

J/ 4t
11.4 11.6

(@) V/4t

11.2

11

0 0.2 04 06 08 1
(b) t/t

10

FIG. 9. (a) The value of the Hund'’s rule termd; which gives
the lower phase boundary of the ferromagnetic region as a function
of t,. We seel is largest, that is, the antiferromagnetic region is
expanded at the expense of ferromagnetismy,a0. (b) The value
of the Hund'’s rule terml., which gives the upper phase boundary
of the ferromagnetic region as a functiontgf The paramagnetic
phase expands slightly at the expense of ferromagnetisty ias
creases, but the effect is relatively small.

J/4at

which differ for the two orbitals. Our conclusion is that the
v b e b P P regime of ferromagnetism is only weakly dependent on the

2 4 6 8 10 ratio t,/t; and we present generalizations of existing strong
coupling calculations to explain this behavior.

It would be interesting to extend these calculations to yet
larger lattices. Unfortunately, this cannot be done for the
FIG. 8. The phase diagram showing the regime of ferromagoriginal itinerant electron Hamiltonian with either world-line
netism for(a) t;=1,t,=0.0, andb) t;=1, t,=0.5. The symmetric  or determinant quantum Monte Carlo methods, owing to the

caset;=t,=1 was shown in Fig. @). The size of the ferromag- “sign” problems. Likewise, the spin-only strong coupling
netic region is not very sensitive to different choiced of version has a sign problems within a world-line approach,
and has only been simulated in a “self-consistent mean field

o _ _ treatment.”?* It is probably possible to attack larger lattices
can be significantly improved by calculations on larger C|U5'using the “density matrix renormalization group®
ters. We have also shown that an appropriately defined par-

ticipation ratio can be used to identify the critical couplings
for a transition into a disordered phase.

We have presented calculations for a generalized version This work was supported by Grant No. NSF-DMR-
of the Hamiltonian which allows for intersite hybridizations 9528535 and the Associated Western Universities.
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