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Ferromagnetism in an orbitally degenerate Hubbard model
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Department of Physics, University of California, Davis, California 95616

~Received 18 December 1996!

We study the magnetic phase diagram of a one-dimensional, orbitally degenerate Hubbard model using the
Lanczos algorithm to project out the ground state. Using lattices larger than those previously explored with
diagonalization approaches, we find a phase diagram which is in much better agreement with a strong coupling
analysis. In addition to determining the phase diagram by calculating the spin sector of minimum energy, we
also show results for the spin-spin correlations and participation ratio, which further characterize the magnetic
order and the itineracy of the electrons. We then describe results for the case when the intersite hybridization
is different for the two orbitals.@S0163-1829~97!04818-2#
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I. INTRODUCTION

The spontaneous breaking of rotational symmetry to a
romagnetic state is a difficult problem in statistical physi
Nevertheless, the occurrence of a ferromagnetic transitio
well established in spin models like the Ising,XY, and
Heisenberg Hamiltonians, when the dimension is sufficien
high, and indeed a combination of analytic and numeri
work has quantitatively characterized the details of the or
of the transitions, the critical temperature, and critic
exponents.1 However, many ferromagnets, like the transiti
metals, are not well described by such spin systems. Inst
their transport properties exhibit features which can only
understood within the context of a band model where
electrons are delocalized. While calculations within the lo
spin density approximation have yielded importa
insights,2,3 the precise nature of the correlations respons
for such itinerant ferromagnets is still an open issue.

For such itinerant ferromagnets, an alternate to electro
structure calculations is to study correlation effects giv
rise to magnetism in tight binding Hamiltonians.1,4,5 The
simplest such model, the single-band Hubbard Hamilton
consists of one orbital hybridized with near neighbor ho
ping t, and an on-site repulsionU between electrons of op
posite spin. The existence of anantiferromagneticregime
near half-filling is well established by a number of numeric
and analytic techniques.6 The single band Hubbard Hami
tonian also exhibits a ferromagnetic phase at largeU/t
within mean field theory. Unlike antiferromagnetism, th
phase has not been observed numerically, and hence the
much less certainty concerning the validity of this Hartre
Fock prediction of ferromagnetism than its antiferromagne
counterpart.

What is rigorously known concerning ferromagnetism
Nagaoka established that in the limit of infiniteU/t, the state
with a single hole doped into half-filling is ferromagnetic7

The question of extending this result to finite hole dens
has been addressed recently in a number of papers,8 and it is
currently known9 that ferromagnetism is unstable for dopin
d.dc50.25 and interactionsU,Uc578t. That an interac-
tion strength an order of magnitude greater than the ba
width,W58t, is necessary for ferromagnetism is indicati
550163-1829/97/55~22!/14968~7!/$10.00
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of the difficulty with which the single band model suppor
spin alignment.

There are also additional rigorous results pertaining
ferromagnetism in the Hubbard model. The Lieb-Mat
theorem rules out ferromagnetism in the one-dimensio
~1-D! Hubbard model.10 That the 2D Hubbard model canno
exhibit long range magnetic order at finite temperature i
consequence of the Mermin-Wagner theorem.11,12Ferromag-
netism has been established in lattices with flat bands, e
cially those arising on bipartite lattices with different num
bers of sites on the two sublattices.13–15 Besides these
renewed studies of the simplest Hubbard model, a numbe
recent papers have focused on the effect of including a
tional off-diagonal interactions such as bond-charge and
change terms.16–18

The suggestion that orbital degeneracy plays a crucial
in itinerant ferromagnetism, a view supported at the m
primitive level by the observation that ferromagnetism o
curs most frequently in metals withd and f electrons, has a
history beginning with Van Vleck19 and Slater, Slater, and
Koster.20 This picture was refined by Roth,21 Kugel and
Khomski,22 and Cyrot and Lyon-Caen,23 who emphasized
the simultaneous appearance of orbital ordering in which
occupation of the orbitals alternates, along with ferroma
netism. This analytic work was within the random phase
proximation and mean field theory applied to strong coupl
versions of the model. Many of the essential features of
picture were verified by exact diagonalization and Mon
Carlo studies of Gill and Scalapino.24 However results from
diagonalization of small clusters and strong coupling ar
ments were only qualitatively in agreement.

In this paper we will explore this specific issue of ferr
magnetism arising within a multi-orbital Hubbard Ham
tonian with a Hund’s rule coupling. In particular, we wi
extend the numerical work of Gill and Scalapino to larg
lattices and resolve the disagreement between cluster
strong coupling calculations. We will also present new
sults showing how the participation ratio can distinguish
phases on the two sides of the ferromagnetic region. Fina
we will determine the phase diagram in limits where t
intersite hybridization is different for the two orbitals, a
would occur, for example, in a multiband model consisti
of extended and localized orbitals. The organization of t
14 968 © 1997 The American Physical Society
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paper is as follows: In Sec. II we write down the Hamiltoni
and discuss its strong coupling limit and also the compu
tional approach we use. In Sec. III we present results for
symmetric case where the hopping of electrons between
in each orbital is identical, and in Sec. IV we take up t
situation where one set of orbitals is more localized than
other. Section V contains some concluding remarks.

II. MODEL AND COMPUTATIONAL APPROACH

We consider a specific Hamiltonian which incorpora
orbital degeneracy and Hund’s rule coupling,

H52t(
i ,l,s

~di11ls
† dils1dils

† di11ls!1U(
il

nil↑nil↓

1V(
iss8

ni1sni2s82J(
iss8

di1s
† di1s8di2s8

† di2s . ~1!

Heredils (dils
† ) are destruction~creation! operators for fer-

mions of spins at sitei and in orbitall51,2. t is an intersite
hybridization between sites in a 1D chain. We sett50.25, so
that the bandwidthW54t51 is our scale of energy.U is an
on-site repulsion between electrons of opposite spin on
same site and in the same orbital.V represents the on-sit
interorbital repulsion. Finally,J is a Hund’s rule coupling.
Note that, as written,J contains a spin diagonal term whic
is an attractive interaction between electrons on different
bitals. Thus we requireV.J so the total interorbital interac
tion is repulsive. Besides the parameters in the Hamilton
the physics is also determined by the filling per site^n& and
the temperatureT. In this paper we will be concerned wit
ground state properties,T50, and will also focus on quarter
filling ^n&51. While systems of higher dimensionality a
clearly the ones of most interest, we can nevertheless
significant insight into the effect of the various interactio
even in 1D.

It is useful to consider the caset50 since this is the
starting point for a strong coupling analysis and also si
certain relationships between the interaction parame
U,V,J are most clearly evident. Fort50 the Hamiltonian
describes a set of decoupled sites. Let us consider a site
two electrons. The six possible configurations, and their
sociated energies, are shown in Fig. 1. IfSz561, that is the

FIG. 1. The six possible statesunls& of two electrons on one site
~with two orbitals!. The first four states are not connected byH to
any other states, ift50, and the energy listed below each state
the diagonal part ofH, ^nlsuHunls&. The last two states are con
nected to each other by the Hund’s rule couplingJ, and the ener-
gies listed below them are the two possible eigenenergies.
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electron spins are parallel, then the energy isV2J, which is
positive since we requireV.J. If Sz50, the electron spins
are antiparallel, and the energies areU ~with a degeneracy of
2!, andV6J. TheSz50 state with energyV2J is the third
component of the spin-one triplet together with theSz561
states. The two possible choices of orbital quantum num
can be considered as a pseudospin1

2. Then the three remain
ing states, two of energyU, and one of energyV1J, form
the ‘‘orbital’’ triplet L51. Orbital symmetry thus require
U5V1J.

The key point of this single-site analysis is that t
Hund’s rule couplingJ favors ‘‘atomic ferromagnetism,’’
S51, that is alignment of the moments of two electrons
the same site. We are, however, interested in the ‘‘quar
filled’’ case, ^n&51. In such a situation where there is o
average a single electron per site, att50 all levels are de-
generate. We can, however, put two such singly occup
sites adjacent to each other and analyze the energy to se
order in the hoppingt ~Fig. 2!. Such an analysis is what lead
to the conclusion that antiferromagnetic correlations
dominant in the single-band Hubbard model at half fillin
and to the familiar strong coupling treatment based on
spin-1/2 antiferromagnetic Heisenberg Hamiltonian. Ho
ever, in the case of the orbitally degenerate model, the s
ation is more complicated, and ferromagnetism with orb
ordering is favored, as seen in Fig. 2.

This observation that ferromagnetism is associated w
the formation of an orbital superlattice was first made
Roth21 and formalized by Cyrot and Lyon-Caen,23 and also
by Kugel and Khomskii.22 One introduces a ‘‘pseudospin’
operatorL with the property thatL1 takes a fermion in or-
bital 2 and transports it to orbital 1,L2 takes a fermion in
orbital 1 and transports it to orbital 2, andLz56 1

2 for fer-
mions in orbitals 1 and 2, respectively. Then the Hamilton
Eq. ~1! can be written at strong coupling as

Heff5(
i

4t2

U
~SW i*SW i112

1
4 !~Li

zLi11
z 1 1

4 !

1
2t2

V2J
~SW i*SW i111

3
4 !~LW i* LW i112

1
4 !

2
2t2

V1J
~SW i*SW i112

1
4 !@Li

zLi11
z 2 1

4

2 1
2 ~Li

1Li11
2 1Li

2Li11
1 !#. ~2!

FIG. 2. Some of the possible configurations of neighboring s
gly occupied sites. The second-order lowering of energy due tot is
indicated. The lowest energy is associated with a ferromagnetic
configuration with opposite orbitals being occupied on the two
jacent sites.
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14 970 55J. KUEI AND R. T. SCALETTAR
Gill and Scalapino have studied this strong coupling mo
with a quantum Monte Carlo method.24 A similar model has
recently been used in order to understand the magnetic p
erties ofC60.

25

While considerable understanding of the original itinera
electron Hamiltonian, Eq.~1!, can be gained by considerin
this strong couplingHeff , a standard approach to the opp
site, weak coupling, limit is the RPA. In the case of t
single-band model, the resulting ‘‘Stoner criterion’’ is that
magnetic instability occurs atUx0(q)51. Near half-filling,
x0(q) is largest at momentumq5p, that is, antiferromag-
netic order is expected. Indeed, for a square lattice in
dimensions,x0(p,p) diverges asT→0 @as ln2(T)# indicat-
ing that antiferromagnetic order exists all the way down
U50. For other fillings, at largeU, the uniform susceptibil-
ity x~0! is largest. At zero temperaturex0(0)5N(eF) and
the Stoner condition for ferromagnetism isUN(eF)51. In
the model withm degenerate orbitals, the analogous criter
for magnetic ordering is@U1(m21)J#N(eF)51. Thus
within this weak coupling treatment it is also apparent t
the Hund’s rule coupling favors ferromagnetism by allowi
ordering at a lowerU.

Results in the intermediate coupling regime require ot
analytic or numerical methods. Our calculational approac
Lanczos diagonalization.26 This technique and its variant
have been widely used recently to study the properties
correlated electron systems on small clusters, espec
those models which cannot be easily analyzed using
quantum Monte Carlo method. The Lanczos algorithm
volves the explicit application of the Hamiltonian to states
the Hilbert space. CPU time and storage grow exponenti
with system size. Here we report on studies of four- a
six-site, two-orbital, quarter-filled systems where the ma
mal Hilbert space dimensionD, exploiting certain symme-
tries of H, is D548 400. Eight-site systems would have
Hilbert space of dimension exceeding 3.3 million.

The Lanczos algorithm provides the ground state ene
E0 and wave functionuc0&. We will infer the nature of
uc0& through a number of different measurements. First,
calculating the energy in different sectors of totalSz , we can
determine whether the ground state is ferromagnetic. Spe
cally, if the ground state energies obtained by restricting
different sectors of totalSz are degenerate, then this mea
that uc0& has nonzero total spin, a ferromagnet. The reaso
that the Lanczos algorithm gives the energy of the low
state not orthogonal to the starting wave function. Since
total Sz commutes withH, a starting wave function of tota
Sz nonzero will have no overlap with the ground state unl
the ground state has nonzero spin. On the other hand, i
ground state is not a singlet, different totalSz starting wave
functions will typically overlap the ground state, and all w
yield the identicalE0 after the Lanczos iterations.

The nature of the ground state can also be inferred
measuring the participation ratio,

P51Y(
i

uc0~ i !u4. ~3!

Herec0( i ), i51, . . . ,D, are theD components of the wave
function in the basis we have chosen for the Hilbert space
not many components are nonzero, for example ifuc0& is
l
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dominated by a few magnetically ordered configuratio
thenP will be relatively small. On the other hand, in a di
ordered, itinerant phase, we expectP to be large.27

We can also explicitly measure the spin-spin correlatio
and their Fourier transform, the structure factor,

c~ j !5^c0usz~ l !sz~ l1 j !uc0&,

Szz~q!5(
j
c~ j !eiq j . ~4!

Heresz( l )5nl1↑2nl1↓1nl2↑2nl2↓ is the totalz component
of spin, including both orbitals. We expectc( j ) to be posi-
tive for different separationsj in a ferromagnetic phase, t
alternate in sign in an antiferromagnetic phase, and to
‘‘small’’ as j increases in a disordered, paramagnetic st
We expect the structure factorSzz(q50) to become large in
the ferromagnetic phase, while an increase inSzz(q5p) will
signal antiferromagnetism. Of course in one dimension,
do not expect any true long range order. To analyze
nature of the ground state in detail would require studies
large lattices and a determination of the exponent describ
the power law of the decay ofc( j ) and other correlation
functions.28 Here we shall confine ourselves to examini
the qualitative behavior ofc( j ), for example the sign of the
near neighbor correlations. However, we shall find t
agrees well with the nature of the phase diagram infer
from the energy and participation ratio.

III. RESULTS: SYMMETRIC HOPPING

We first present results for the case when the hopp
parametert is the same for each type of orbital. All data
this and the following section are for six sites, unless oth
wise indicated.

In Fig. 3~a! we show the ground state energy in differe
sectorsn↑2n↓ of total Sz . We observe there a range o
Hund’s rule couplings,Jc1,J,Jc2 where the different sec
tors have the same ground state energies. As remarked i
previous section, such a degeneracy is a signature of a
romagnetic ground state with total spinSÞ0.

We can get further insight into the nature of the grou
state by examining the sign of the near neighbor spin-s
correlation function.c(1),0 is characteristic of an antifer
romagnetic phase, whilec(1).0 is characteristic of ferro-
magnetism. In Fig. 4 we see thatc(1) is negative for
J,Jc1 and positive forJc1,J,Jc2 . Finally, c(1)'0 for
J.Jc2 , suggesting a weakly ordered, paramagnetic pha
The behavior of the structure factor~not shown! is consistent
with this. ForJ,Jc1 , the structure factorS(q) is peaked at
momentumq5p, while it is peaked at momentumq50 in
the intermediate regionJc1,J,Jc2 . Of course, the local
spin correlation only contains qualitative information. W
need to exhibit the behavior ofc( l ) as l→`, or perform a
scaling analysis of the structure factor, before rigorously
termining the nature of the dominant correlations in the s
tem. Such detailed analysis is not possible for the sys
sizes considered here.

We next consider the behavior of the participation rat
As we have discussed,P measures the number of differen
states in our basis which have a significant component in
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55 14 971FERROMAGNETISM IN AN ORBITALLY DEGENERATE . . .
expansion ofuc0&. Since we work in a basis of eigenstates
the occupation numbers, perfectly ferromagnetic or anti
romagnetic states can be represented by a single basis v
and henceP51. Of course, the existence of quantum flu
tuations in the form of the nonzero hopping parametert pre-
cludes that these be eigenstates of the Hamiltonian. Ne
theless we expect thatP might remain small for magnetically
ordered phases. On the other hand, an itinerant phase w
characterized by a much larger number of basis vectors
tributing to the construction of the ground state. This exp
tation is borne out in Fig. 5, where we see thatP is small
both for J,Jc1 , the region which the measurement
c(1) suggested might be antiferromagnetic, and
Jc1,J,Jc2 , the region that bothE0 degeneracies an
c(1) suggested might be ferromagnetic. For a valueJ.Jc2
consistent with that determined in Figs. 3 and 4, the part
pation ratio rises abruptly.

All three measurements, the ground state energy, spin
relations, and participation ratios give consistent locatio
for two critical values of the Hund’s rule couplingJ where
magnetic transitions occur. We can put together sweep
J at different values ofV to construct a phase diagram. F
weak coupling, no magnetic order occurs, but forV/4t large
there exists a ferromagnetic region. This region is exhibi
for a four-site lattice in Fig. 6~a!, along with the strong cou

FIG. 3. ~a! The ground state energy per site as a function
Hund’s rule couplingJ for different totalSz . HereV/4t512 and
U5V1J. ~b! The same as~a! except the difference in energie
between the 6-0 and 3-3 sectors is shown. WhenDE050, the
ground state is ferromagnetic.
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pling phase boundaries. As discussed by Gill,24 the lower
phase boundary is obtained by equating the energies of
ferromagnetic configuration of Fig. 2~d! with the sum of the
antiferromagnetic energies of Figs. 2~b! and 2~c!. This gives
the conditionJ5V2/(U1V), which along withU5V1J
yields the lower phase boundaryJc15(&21)V of Figs.
6~a! and 6~b!. Ferromagnetism becomes unstable to a dis
dered phase when the energyV2J which induces momen
formation by preventing double occupation of a site@Figs.
1~a! and 1~b!#, becomes of order the bandwidth 4t. This
yields the upper boundaryJ5V24t of Figs. 6~a! and 6~b!.

The four-site calculation, originally done by Gill24 and
reproduced by us, agrees qualitatively with the strong c
pling analysis. However, as shown in Fig. 6~b!, the agree-
ment is much improved if a six-site cluster is considered,
we have done here. It would be interesting to do the cal
lation for a yet larger eight-site cluster to ensure that
agreement remains good.

We can also perform the calculation for a case when

FIG. 4. The near neighbor spin-spin correlation functionc(1) as
a function of Hund’s rule couplingJ. Here V/4t512 and
U5V1J. c(1) is negative~antiferromagnetic! for J,Jc1 , positive
~ferromagnetic! for Jc1,J,Jc2 , and relatively small~paramag-
netic! for J.Jc2 . The valuesJc154.8 andJc2511.1 which bound
the ferromagnetic region are in good agreement with the ene
degeneracy measurement of Fig. 3~vertical dashed lines!.

FIG. 5. The participation ratio as a function of Hund’s ru
couplingJ. HereV/4t512 andU5V1J. In the magnetically or-
dered phases,P is small.P increases dramatically in the parama
netic phase.

f
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14 972 55J. KUEI AND R. T. SCALETTAR
repulsion for electrons of opposite spin on the same site
orbital is infinite. In this case, as shown in Fig. 7, the reg
of ferromagnetism is considerably enhanced, but the ag
ment with the cluster and strong coupling calculations
mains good.

IV. RESULTS: ASYMMETRIC HOPPING

Here we present results for the case when the inter
hybridizationt depends onl, as might occur, for example, i

FIG. 6. The ground state phase diagram inferred from the d
of Figs. 3–5. The shaded region ofJ.V is physically forbidden.
The hatched region is ferromagnetic. The dotted and dashed
are the strong coupling boundaries.~a! Four sites.~b! Six sites. Our
four-site phase diagram is identical to that obtained by Gill a
Scalapino using diagonalization. The six-site phase diagram re
sents a significant improvement of agreement with the strong c
pling calculation.
nd

e-
-

te

orbital l51 comprised an extended conduction band, a
l52 a set of localized orbitals. Such different choices
tl are, of course, considered in the ‘‘Anderson lattice
Hamiltonian.~However in that model there is an interorbit
hybridization on each site, as opposed to the interorbital
pulsion and Hund’s rule coupling considered here, and
dominant magnetic ordering is antiferromagnetic.! Figures
8~a! and 8~b! show the regions of ferromagnetism for cas
when the orbitalsl52 do not hybridize at all,t250, and
when the hybridizationt250.5t1 .

Results forJc1 andJc2 for V512 and a range of values o
t2 /t1 are given in Fig. 9. The ferromagnetic region expan
somewhat at the expense of antiferromagnetic order ast2 is
turned on from zero, the position ofJc1 shifting by about
25%. We can understand this by a slight generalization
strong coupling analysis of Gill and Scalapino to inclu
different hopping parameters in the diagrams of Figs. 2~b!–
2~d!. If t25at1 we find Jc1 /V5@A11a221#/a2. This
analysis predicts about a 20% decrease inJc1 from a50 to
a51, in reasonable agreement with the numerical work.

Meanwhile, the upper ferromagnetic-paramagne
boundaryJc2 is even less sensitive to the hybridizationt2 ,
shifting only by 5% or so ast2 varies from describing com
pletely localized orbitals to a hybridization equal tot1 . This
is easily understood since the orbitall51 bandwidth re-
mains fixed atW154t and can drive the destruction of th
moments independent of the value of the bandwidthW2 of
the second orbitall52.

V. CONCLUSIONS

In this paper we have determined the phase diagram o
orbitally degenerate tight binding Hamiltonian which in
cludes both intra- and interorbital repulsions and a Hun
rule coupling. We have shown that the previous agreem
between diagonalization and strong coupling calculatio

ta

es

d
re-
u-

FIG. 7. The regime of ferromagnetism forU5`. The lower
strong coupling phase boundary would be atJ/4t50.
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55 14 973FERROMAGNETISM IN AN ORBITALLY DEGENERATE . . .
can be significantly improved by calculations on larger cl
ters. We have also shown that an appropriately defined
ticipation ratio can be used to identify the critical couplin
for a transition into a disordered phase.

We have presented calculations for a generalized ver
of the Hamiltonian which allows for intersite hybridization

FIG. 8. The phase diagram showing the regime of ferrom
netism for~a! t151, t250.0, and~b! t151, t250.5. The symmetric
caset15t251 was shown in Fig. 2~b!. The size of the ferromag
netic region is not very sensitive to different choices oft2 .
s-
ar-
s

ion

which differ for the two orbitals. Our conclusion is that th
regime of ferromagnetism is only weakly dependent on
ratio t2 /t1 and we present generalizations of existing stro
coupling calculations to explain this behavior.

It would be interesting to extend these calculations to
larger lattices. Unfortunately, this cannot be done for
original itinerant electron Hamiltonian with either world-lin
or determinant quantum Monte Carlo methods, owing to
‘‘sign’’ problems. Likewise, the spin-only strong couplin
version has a sign problems within a world-line approa
and has only been simulated in a ‘‘self-consistent mean fi
treatment.’’24 It is probably possible to attack larger lattice
using the ‘‘density matrix renormalization group.’’29
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FIG. 9. ~a! The value of the Hund’s rule termJc1 which gives
the lower phase boundary of the ferromagnetic region as a func
of t2 . We seeJc1 is largest, that is, the antiferromagnetic region
expanded at the expense of ferromagnetism, att250. ~b! The value
of the Hund’s rule termJc2 which gives the upper phase bounda
of the ferromagnetic region as a function oft2 . The paramagnetic
phase expands slightly at the expense of ferromagnetism ast2 in-
creases, but the effect is relatively small.
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