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The study of ultracold optically trapped atoms has opened new vistas in the physics of correlated quantum
systems. Much attention has now turned to mixtures of bosonic and fermionic atoms. A central puzzle is the
disagreement between the experimental observation of a reduced bosonic visibility Vb, and quantum Monte
Carlo �QMC� calculations which show Vb increasing. In this paper, we present QMC simulations which
evaluate the density profiles and Vb of mixtures of bosons and fermions in one-dimensional optical lattices. We
resolve the discrepancy between theory and experiment by identifying parameter regimes where Vb is reduced,
and where it is increased. We present a simple qualitative picture of the different response to the fermion
admixture in terms of the superfluid and Mott-insulating domains before and after the fermions are included.
Finally, we show that Vb exhibits kinks which are tied to the domain evolution present in the pure case, and
also additional structure arising from the formation of boson-fermion molecules, a prediction for future
experiments.

DOI: 10.1103/PhysRevA.77.041608 PACS number�s�: 03.75.Mn, 03.65.Yz, 03.75.Hh, 71.10.Pm

It has been widely suggested that the strong correlations
responsible for magnetism, superconductivity, and the metal-
insulator transition in the solid state can be studied via ultra-
cold optically trapped atoms. Indeed, this idea has been suc-
cessfully realized in the context of both bosonic and
fermionic atoms. In the former case, the transition between
condensed �superfluid� and insulating phases was demon-
strated through the evolution of the interference pattern after
the release and expansion of the gas �1�. Initial studies fo-
cused on the height �1� and width �2� of the central interfer-
ence peak, with later work looking at the visibility V, which
measures the difference between the maxima and minima of
the momentum distribution function S�k� �3–5�. Interesting
“kinks” are observed in V which are associated with the re-
distribution of the density as the superfluid shells evolve into
insulating regions �6,7�. For trapped fermions �8–12�, Mott
phases could also form �13–15�, however, without a signal in
S�k�. Instead, the evolution of the kinetic energy has been
proposed as a means to pinpoint the transition �16�.

Attention has turned at present to multicomponent sys-
tems, which offer a rich set of phenomena including cross-
over between Bose-Einstein condensation �BEC� and BCS
pairing for two attractive fermionic species and Fulde-
Ferrell-Larkin-Ovchinnikov phases in situations with two
imbalanced fermion populations. Two recent experimental
papers report the effect of the addition of fermionic 40K at-
oms on the visibility of bosonic 87Rb in a three-dimensional
trap �17,18�. The basic result is a decrease in the bosonic
visibility Vb driven by the fermion admixture. A large num-
ber of qualitative explanations has been put forth for this
phenomenon, including the localization of the bosons by the
random fermionic impurities, the segmentation of the
bosonic superfluid, the adiabatic heating of the bosonic cloud
when the lattice depth is increased in the presence of the two
species, an enhanced bosonic mass due to the coupling to the
fermions, and the growth of Mott-insulating regions. A fun-
damental difficulty is that exact quantum Monte Carlo

�QMC� calculations show an increase in Vb �19�, in disagree-
ment with experiment. In this paper we resolve this issue.

The behavior of Bose-Fermi mixtures has attracted con-
siderable theoretical attention. The Hamiltonian was derived
and its parameters linked to experimental quantities by Albus
et al. �20�. The equilibrium phase diagram has been studied
using mean-field theory and Gutzwiller decoupling �20–22�,
perturbation theory �21�, dynamical mean-field theory
�DMFT� �22�, exact diagonalization �23�, quantum Monte
Carlo methods �19,24–26�, and density matrix renormaliza-
tion group �DMRG� �19,27�. The results of these studies in-
clude the observation of Mott-insulating phases at “double
half-filling,” anticorrelated winding of the two species of
quantum particles, molecule formation, and precise determi-
nation of the exponents characterizing correlation function
decay in the different phases. The behavior of the visibility
was addressed by Pollet et al. �19�, who find interesting non-
monotonic structures with fermion density. However, Vb is
always increased relative to the pure case �28�.

In this paper we explore the visibility of Bose-Fermi mix-
tures in one dimension using QMC simulations with the ca-
nonical worm algorithm �29–31�. While previous QMC stud-
ies have reported a growth of Vb, we show that a significant
reduction, such as seen experimentally, is also possible with-
out invoking temperature effects �19�. The enhancement �re-
duction� of Vb caused by the disruption �inducement� of the
bosonic Mott-insulator phase by the boson-fermion interac-
tions. Vb also exhibits kinks reminiscent of those in the pure
boson case. In the subsequent sections we write down the
Hamiltonian and observables and briefly discuss the QMC
algorithm. We then present the evolution of Vb with fermion
concentration, its interpretation in terms of the bosonic den-
sity profiles, and evidence for the formation of a molecular
superfluid in the trap center.

The one-dimensional �1D� Bose-Fermi Hubbard Hamil-
tonian is �20�
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where b̂j �b̂j
†� and ĉj �ĉj

†� are the annihilation �creation� op-
erators of the bosons and �spin-polarized� fermions at lattice

site j, respectively, and n̂b
�i�= b̂i

†b̂i, n̂f
�i�= ĉi

†ĉi are the corre-
sponding number operators. The first two terms of Eq. �1�
describe bosonic and fermionic nearest-neighbor hopping.
The curvature of the trap is W, and the coordinate of the jth
site is given by xj = ja, where a is the lattice constant. Ubb
and Ubf are the on-site boson-boson and boson-fermion in-
teractions. In this work we consider 80-site chains with the
nearest-neighbor hopping set to be identical for fermions and
bosons �tb= tf = t=1� and trapping potential W=0.01t.

In the canonical worm algorithm �29–31� employed in our
calculation, operator expectation values are sampled through
the introduction of open-ended world lines that extend over
equal imaginary time into a path integral expression for the
partition function. The properties we study include the ki-
netic, potential, and trap energies, the density profiles, and
the visibility,

V =
Smax − Smin

Smax + Smin
, �2�

where Smax and Smin are the maximum and minimum values
of momentum distribution function,

S�k� =
1

L
�
j,l

eik�xj−xl��b̂j
†b̂l� . �3�

The enhanced visibilities with fermion concentration re-
ported previously �19� are in contrast with the trend to re-
duced Vb measured experimentally �17,18�. In Fig. 1, we see
the origin of this effect in a system with 40 bosons: the
visibility enhancement at large Ubb is caused by the destruc-
tion of the Mott phase at the trap center by the fermions. It is
natural to conjecture that if nb

�i��1 at the trap center the

additional attraction due to the fermions could induce Mott-
insulating behavior and reduce V. In Fig. 2�a�, we show that
this expectation is correct. Here, we fix Ubb=12t and in-
crease Nb for both the pure case and for a system with fer-
mion number fixed at Nf =9 and boson-fermion interaction at
Ubf =−5t. What we observe is that in a window where the
boson central density is approaching nb

�i�=1 the bosonic vis-
ibility is decreased by the presence of the fermions. The
cause is clear: if the bosons are poised just below Mott-
insulating behavior, then the fermions can induce it. This is
supported by a comparison of the density profiles in Fig.
2�b�.

The primary mechanism through which fermions affect Vb
is the local adjustment of the site energy and hence of the
local bosonic density. This is an effect which occurs regard-
less of the dimensionality. Hence, we expect aspects of our
conclusions to be relevant to experiments in higher dimen-
sion �19�. While we have shown a decreased visibility simi-
lar to that seen experimentally, the enhancement of visibility
may be the more generic behavior in one dimension. In the
one-dimensional “state diagram” of the purely bosonic case
�32� the area of parameter space occupied by the phase with
a Mott plateau of nb

�i�=2 is very narrow. Thus the prospect for
the fermions to drive the system into this phase is limited.

In the case of a pure bosonic system �7�, the change in
visibility with the boson-boson interaction strength Ubb is not
smooth, but is accompanied by “kinks.” These kinks are as-
sociated with a freezing of the density profile when the trans-
fer of the bosonic density from the trap center is interrupted
by the formation of Mott insulator shoulders. In Fig. 3, the
behavior of the visibilities and density profiles with Ubb in
the presence of fermions is shown. Vb decreases with Ubb as
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FIG. 1. �Color online� Comparison of the density profiles at
Ubb=8.3t and Ubf =−5.0t for Nf =0,3 ,5 fermions on an 80-site
chain with 40 bosons. The Mott insulator at the trap center for the
pure bosonic case is destroyed by the addition of fermions. This
drives the increase in the visibility.
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FIG. 2. �Color online� �a� Bosonic visibility Vb as a function of
the number of bosons for Nf =0 and 9 fermions with fixed Ubb

=12.0t and Ubf =−5.0t. �b� Bosonic density profiles for Nb=26
bosons and Nf =0,9 fermions. The addition of the fermions induces
Mott-insulating behavior in the bosons. The key consequence is a
decrease in Vb for Nf =9 relative to Nf =0, similar to that seen in the
experiments.
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the interactions reduce the quasicondensate fraction Smax
b .

Conversely, the interactions enhance Smax
f and V f increases

with Ubb. There are, however, additional kinks in the case
when fermions are present whose origin we shall discuss
below. Figure 4 helps to quantify this freezing by showing
the evolution of the trap, interaction, and kinetic energies
with Ubb. These energies exhibit a sequence of plateaus and
rapid drops corresponding to the kink locations in Fig. 3.

Figure 5�a� compares the visibility evolution for the pure bosonic case �Nf =0� with two different fermion numbers
Nf =3 and 5. For Nf =3, the kink at lowest Ubb=6.1t is asso-
ciated with the initial emergence of the Mott shoulders. This
kink coincides with one in the pure bosonic case Nf =0 be-
cause the shoulders form outside the regions occupied by the
fermions at the trap center. For Nf =5, the width of the fer-
mion density is comparable to the size of the bosonic super-
fluid in the center of the trap, and the kink at Ubb=6.0t sig-
nifies a freezing of the bosonic density but not the formation
of the Mott shoulders. Instead, the kink visible at Ubb
�6.8t is responsible for the formation of the Mott shoulders.
This shift to higher Ubb is expected since the attractive Ubf
delays the transfer of bosonic density out of the center. Fig-
ures 5�b� and 5�c� compare the components of the energy.
Each plateau signifies that the bosonic and fermionic densi-
ties are frozen over the range in Ubb. Past experiments
�17,18� did not have the resolution to exhibit the kinks we
have seen in these simulations; however, they might be seen
with improved accuracy.

We also note in Fig. 5 that the number of plateaus is
directly related to the number of fermions in the Bose-Fermi
mixture and that each plateau is roughly the same size, indi-
cating that bound pairs of bosons and fermions are being
destroyed as Ubb is increased. This conclusion is substanti-
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FIG. 3. �Color online� �a� Bosonic and fermionic visibilities and
bosonic Smax as functions of Ubb / t for a system with 40 bosons, 3
fermions, and Ubf =−5.0t. The “plateau” regions where the rate of
reduction of V is reduced are due to freezing of the density profiles
�see text�. The fast decrease after Ubb / t�9.3 is due to the formation
of a Mott-insulating region in the central core, which is fully
formed and indicated by the arrow at Ubb / t=9.6. �b� Boson density
profiles at five different values of Ubb / t.
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FIG. 4. �Color online� �a� Trapping �Etrap� and interaction �Eint�
energies as functions of Ubb / t for the system of Fig. 3 �b� Bosonic
�Ekin

b � and fermionic �Ekin
f � kinetic energies.
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FIG. 5. �Color online� Comparison of �a� bosonic visibility Vb,
�b� the trapping energy, and �c� the interaction energy for Nf =0, 3,
and 5 fermions on an 80-site chain with 40 bosons and fixed Ubf

=−5.0t. The arrows in panels �a�, �c�, and �b�, respectively, denote
the locations of the kinks �the onset of rapid change in energy and
visibility� for Nf =0, 3, and 5 fermions.
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ated in Fig. 6, where we compare the bosonic density with
the fermionic density. The fermionic density is offset by a
constant to emphasize the near perfect overlap in the densi-
ties near the center of the trap, indicating that the trap center
is populated by a molecular superfluid �MSF�. Indeed, at the

weakest coupling, Fig. 6�a�, the fermion density precisely
equals the excess boson density above the commensurate
Mott value nb

�i�=1. When Ubb is increased, moving from one
plateau to another in Fig. 5, the MSF region in the center of
the trap shrinks. For the kink at highest Ubb ��9.8t for Nf

=5�, the MSF region is destroyed, the bosonic density is a
Mott insulator, and the fermionic visibility V f →1.

In summary, we have shown that the visibility of Bose-
Fermi mixtures can be enhanced or reduced by the boson-
fermion interactions depending on whether the bosonic den-
sity in the pure case is above or below commensuration. This
result resolves a fundamental disagreement between experi-
ment and QMC simulations. There are numerous kinks in the
visibility and the different energies that result from freezing
of the density profiles. While our bosonic component is suf-
ficiently large so that our results are converged with respect
to lattice size, the number of fermions is much smaller. It is
possible that the kinks will merge together and be less easy
to observe in a larger system. The density profiles near the
kinks show direct evidence for a molecular superfluid in the
center of the trap and that a larger Ubb is required to destroy
the bound pairs with larger Nf and subsequently induce Mott-
insulating behavior.
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FIG. 6. �Color online� Bosonic and fermionic density profiles
for �a� Ubb=6.3t, �b� Ubb=7.2t, �c� Ubb=8.6t, and �d� Ubb=9.5t
with 5 fermions, 40 bosons, and fixed Ubf =−5.0t. The fermionic
density is offset and the dashed gray line indicates zero density. The
densities match in the center of the trap, with the region of coinci-
dence decreasing as Ubb increases.
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