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Evolution of the Density of States Gap in a Disordered Superconductor
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We determine the effect of a random potential on the density of statesNsvd in the attractive Hubbard
model. At weak coupling, disorder closes the gap concurrently with the destruction of supercond
ity. At larger, but still intermediate coupling, a pseudogap inNsvd remains beyond the point at whic
off-diagonal long range order vanishes. This change in the elementary excitations of the insu
phase corresponds to a crossover between Fermi and Bose insulators. [S0031-9007(98)07201-

PACS numbers: 74.20.–z, 71.30.+h, 71.55.Jv, 74.76.–w
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Analysis of the effect of randomness on the superc
ducting state has a long history [1], beginning with And
son’s observation [2] that in the presence of nonmagn
disorder the Cooper wave function can be constructed
replacingsk ", 2k #d pairs by an appropriate combinatio
of time reversed, but still extended, eigenstates. Re
theoretical work [3] has attempted to understand exp
ments [4] on the superconducting-insulator (SC-I) tra
sition in thin films. Here, the superconducting phase
destroyed by strong disorder which localizes the electr
entirely. Numerical work [5] has focused on boson mo
els in which coherence of the pair phase is the centra
sue, and the role of fluctuations in the pair amplitude
suppressed. Granular systems might be well describe
such preformed Cooper pairs, and, furthermore, scaling
guments suggest universal conductivity might find a na
ral explanation within boson systems [3].

Despite the successes of numeric studies of interac
disordered Bose systems, it is clear that explicit cal
lations for itinerant electron models, in which pairs c
break apart, are essential. Experimentally, there is
dence for both SC-I transitions to a bosonic state [6] a
to a fermionic state [7], distinguished by the existence
lack of an energy gap, respectively, in the insulating pha
There is currently considerable controversy regarding
meaning of the two insulating phases seen experimen
[8]. Theories implicating both bosons [9] and fermio
[10] exist.

In this paper we describe the evolution of the sing
particle density of states for the disordered, attractive H
bard Hamiltonian, a model which can interpolate betwe
Bose and Fermi limits. We show that increasing dis
der destroys long range pairing correlations and drive
superconducting-insulator phase transition. However,
density of statesNsvd shows a gap which closes with th
destruction of superconducting long range order for re
tively weak couplings yet retains a gap beyond the criti
disorder strength for larger couplings. Sweeps across
disorder-interaction phase diagram allow us to locate qu
titatively the critical coupling strengths for gap and pair o
der formation in a set of representative cases. This is
first computation of the density of states in a finite dime
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sional disordered fermion model via the quantum Mon
Carlo (QMC) and maximum entropy (ME) methods.

The attractive Hubbard Hamiltonian, in the presence
random site energies is

H ­ 2 t
X

kijls
scy

iscjs 1 c
y
jscisd 2

X
is

sm 2 yidnis

2 jUj
X

i

µ
ni" 2

1
2

∂ µ
ni# 2

1
2

∂
. (1)

Here cis is a fermion destruction operator at sitei with
spin s, nis ­ c

y
iscis, and the chemical potentialm fixes

the average densityknl. The site energiesyi are inde-
pendent random variables with a uniform distribution ov
f2Vy2, Vy2g. The interaction has been written in particle
hole symmetric form so thatm ­ 0 corresponds toknl ­ 1
at all U andT whenV ­ 0. The lattice sumkijl is over
near neighbor sites on a two dimensional square lattice

We solve for the equilibrium properties of this Hami
tonian using the determinant QMC method [11]. Previo
numerical studies of the clean model have determined
phase diagram [12] by a finite-size scaling analysis of
equal time pair-pair correlation functions,

Pssjd ­
1
N

X
i

kDi1jD
y
i l, D

y
j ­ c

y
"jc

y
#j . (2)

The phase diagram consists of a state with simultane
charge density wave (CDW) and superconducting cor
lations atT ­ 0 and half filling, and a finite temperature
Kosterlitz-Thouless transition (with a maximalTc ø 0.1t
for jUj ­ 4t) to a phase with power law decay of pairin
correlations off half filling. In this paper we will study
fillings knl ­ 0.875 for which strong CDW correlations
are absent and the transition temperature to the SC ph
is nearly maximal.

In Fig. 1 we show the suppression of long range corre
tions inPssjd with increasing disorder strength. A finite
size scaling analysis of the structure factor determines
critical value Vc ­ s3.25 6 0.2dt for the destruction of
the superconducting state.Vc can also be identified by the
superfluid densityDs and the conductivity [13]. These
© 1998 The American Physical Society 2775
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FIG. 1. The equal time pair correlationPssjd is shown at
T ­ 0.10 as a function of separationj for different degrees
of disorder. Pssjd remains finite at largej for V ­ 2.0, but
goes to zero rapidly withj at V ­ 4.0.

quantities give consistent values,Vc ­ s3.2 6 0.7dt and
Vc ­ s3.5 6 0.5dt, respectively, for the critical disorder.

The density of states is a quantity which, like th
conductivity, is directly accessible experimentally.
evaluation requires an inversion of the integral relation

Gstd ­
1
N

X
p

kcpstdcy
p s0dl ­

Z 1`

2`

dv
e2vtNsvd
1 1 e2bv

,

(3)

between the density of statesNsvd and the imaginary
time dependent Green’s functionGstd. We do this using
Bryan’s method [14] and classic maximum entropy [1
using the full imaginary-time covariance matrix.

Although this approach is fairly well developed fo
clean systems, the inclusion of disorder raises a num
of new questions of principle. The proper treatment
errors and correlations in the QMC data was the cen
achievement of the ME approach [16], and it is not obvio
how additional fluctuations from disorder averaging w
affect the procedure. Therefore, we have checked
calculation against analytic results both at weak and str
coupling. Besides verifying the numerics, the behav
in these two limits also presages the two distinct types
insulating behavior we see in the full model.

In the noninteracting limit we can diagonalize th
Hamiltonian and obtainEa , the single-particle eigenene
gies, and thenceNsvd ­

1
N

P
a dsv 2 Ead. In this limit

the determinant QMC method computes the imagin
time fermion Green’s function exactly. Tests of the M
approach in the clean case require that some noise be a
to the exactGstd coming from the QMC [17]. In the
random case, thisad hocnoise does not need to be adde
sinceGstd already has error bars from disorder avera
ing. We find that the ME approach exactly tracks t
disorder-induced broadening ofNsvd [18]. For smalljUj
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we expect disorder to broaden and eliminate the super
ducting gap as well.

The strong-coupling,t ­ 0, limit also can be solved
analytically. For a single site,

Gstd ­
e2bUy4e2tD2 1 ebsUy41yide2tD1

2sebUy4 coshbyi 1 e2bUy4d
,

Nsvd ­
s1 1 e2bD2 de2bUy4

2sebUy4 coshbyi 1 e2bUy4d
dsv 2 D2d

1
s1 1 e2bD1debsUy41yid

2sebUy4 coshbyi 1 e2bUy4d
dsv 2 D1d .

(4)

Here D6 ­ 6Uy2 1 yi. After disorder averaging, th
two delta functions in the density of statesNsvd are
broadened to two distributions centered about6Uy2, each
with width V . WhenV ­ U these merge, and the gap
Nsvd at v ­ 0 is closed. However, the thermal facto
greatly suppressNsvd near v ­ 0. At t ­ 0 there is
no long range pairing order, so that this “pseudog
in the density of states reflects the tendency for on-
singlet formation. We have shown that our QMC1

ME procedure accurately reproduces the analytic re
Eq. (4) as a function of temperature, disorder strength,
interaction strength [18]. A central conclusion of our wo
is that this pseudogap behavior persists far from the stro
coupling limit as the hoppingt is turned on.

We now study the crossover between these two p
sible types of effect of disorder onNsvd in the full
model. In Fig. 2 we show the evolution ofNsvd with
increasing interaction strengthjUj at fixed disorderV ­
2t. Nsvd evolves from its gapless, noninteracting for
to possessing a well-formed gap atjUj ­ 4t. Similarly,
in Fig. 3 we show the evolution ofNsvd with increasing
disorderV , at fixed values of the interaction,jUj ­ 4t.
In contrast to the noninteracting case where increa
V results in the expected broadening ofNsvd, here the
gap in Nsvd is remarkably robust. Note the values
V are well beyond the point where the superconducti
insulator transition has occurred, as indicated by the res
in Fig. 1 and related measurements [13]. In the repuls
Hubbard model at the same value ofUyt the gap in
Nsvd requires thatlong rangeantiferromagnetic order b
present, specifically, the correlation lengthjaf must exceed
the lattice size [19]. In contrast, here we find that a g
in Nsvd persists despite the clear destruction of such l
range order.

How can we interpret these results? In the we
coupling limit, disorder broadensNsvd at all energies. In
particular, the superconducting gap inNsvd is closed at
the same point where disorder destroys the long range
correlations. This closing of the gap is indicative of t
predominance of fermionic elementary excitations in
insulating phase. In the strong-coupling limit, the dens
of states is not broadened by disorder nearv ­ 0 and
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FIG. 2. The density of statesNsvd at t ­ 1, T ­ 0.125,
V ­ 2, jUj ­ 1, 2, 3, 4 on an 8 3 8 lattice. For sufficiently
small jUj, scattering by the disorder inhibits phase coheren
and the superconducting gap is destroyed. A superconduc
gap forms with increasing interaction strengthU. A study of
the pair correlationsPssjd indicates that gap formation occurs
precisely with the onset of superconductivity.

a pseudogap survives. The results of Fig. 3 imply th
already at a value of interaction strengthjUj ­ 4t which is
only one-half the bandwidth,W ­ 8t, the superconducting
gap is robust to disorder. In previous work [20], it wa
found that atV ­ 0 and jUj ­ 4t the spin susceptibility
exhibits a reduction at low temperatures, indicative
Bose-like behavior, despite the fact that the temperat
dependence of the chemical potentialmsT d is still clearly
that of a degenerate Fermi system. We conclude here
for an interaction strength as low asjUj ­ 4t, the density
of states reflects Bose-like character at allV . As shown
in Fig. 3, at either side of the critical disorderVc for the
destruction of long range order in this coupling regim
there are no indications of fermionic excitations inNsvd.

The phase diagram is shown in Fig. 4. For weak i
teractions, there is a SC-Fermi insulator (SC-FI) transiti
with disorder as seen in one class of experiments [7]. Fo
stronger, but nevertheless intermediate coupling, the ph
diagram already exhibits the SC-Bose insulator (SC-B
transition seen in another class of experiments [6]. T
Bose and Fermi insulators are distinguished by the pr
ence or absence, respectively, of local Cooper pairs. S
pairs reveal themselves in turn in gaps in quantities li
Nsvd and the uniform spin susceptibility [13]. We hav
established the insulating character of the phase at inter
diate couplings,U ­ 23, 24, 26 through a direct evalu-
ation of the conductivity [13]. From Eq. (4) it follows tha
for small t the pseudogap inNsvd opens even for very
smalljUjyV at largeb, indicating that the FI-BI crossover
has the trajectory shown [18]. Theoretically, a unive
sal resistivity is predicted by a bosonic treatment of t
transition [9]. It has been suggested that the presence
fermions causes nonuniversal properties at the SC-I tra
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FIG. 3. The density of statesNsvd at t ­ 1, U ­ 24,
T ­ 0.125, V ­ 0.0, 2.0, 4.0 on an 8 3 8 lattice. A study
of the equal time pair correlation shows that forV ,
Vc ø 3.5 the system is a superconductor. ForV $ Vc the
system is an insulator. The gap inNsvd persists even
after long range pair correlations, and superconductivity,
destroyed. Furthermore, there is no enhancement inNsvd as
one approachesVc from either side, indicating that the syste
is not a Fermi liquid at the SC-BI transition.

tion [21]. It is possible that the attractive Hubbard mod
will exhibit universal resistivity only in the Bose-insulato
regime, though considerable further work needs to be d
to settle this issue.

FIG. 4. Phase diagram as a function of disorderVyt and
interaction strengthjUjyt. The solid circles indicate the
location of the entry into the superconducting phase
determined by our simulations. The remainder of the so
line indicates an estimate of the location of the boundary of
superconducting region. The arrows correspond to Figs. 2
3, open triangles indicate gapped regions while closed trian
indicate no gap inNsvd. In the superconducting regime th
pair correlations have long range order and there is a ga
Nsvd. In the insulating phases there is no pair long ran
order. The hatched region demarks schematically the cross
between the Bose and Fermi insulators.
2777
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The interplay of finite-size effects and the developme
of a gap inNsvd is a subtle issue. As described above,
the case of the half-filled repulsive Hubbard model atU ­
4t, an antiferromagnetic gap inNsvd at finite temperature
disappears when the lattice size is increased beyond
correlation length of antiferromagnetic order. We ha
studied this issue carefully by further evaluation ofNsvd
on a range of lattices, and conclude that the gap we obs
is a robust feature and not an artifact of finite lattice si
A crucial difference here from the case of the half fille
repulsive model is that the antiferromagnetic transiti
takes place only atT ­ 0, whereas the superconductin
transition off half filling in the attractive model take
place at finite temperature. It is also possible that furt
lowering of the temperature might result in the openi
of a gap at smallU [22]. However, it is clear that for
the temperature range studied, that is, down tob ­ 8, the
behavior of the density of states is qualitatively differe
for small and largejUj.

In conclusion, we have computed the density of sta
Nsvd in a disordered interacting fermion model with
combination of the QMC and ME methods. The disord
induced broadening expected in the weak-coupling B
limit is already absent by the timejUj ­ 4t, half the
single-particle bandwidthW ­ 8t. Disorder closes the
gap in the density of states for weak interactions b
for stronger interactions has little effect on the gap w
beyond the point where pair coherence vanishes and
system is insulating. At the coupling where a metal
state has been previously identified, the density of sta
suggests bosonic excitations on either side of the S
transition.
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