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Evolution of the Density of States Gap in a Disordered Superconductor

Carey Huscroft and Richard T. Scalettar

Department of Physics, University of California, Davis, California 95616
(Received 13 April 1998

We determine the effect of a random potential on the density of stte$ in the attractive Hubbard
model. At weak coupling, disorder closes the gap concurrently with the destruction of superconductiv-
ity. At larger, but still intermediate coupling, a pseudogapVitw) remains beyond the point at which
off-diagonal long range order vanishes. This change in the elementary excitations of the insulating
phase corresponds to a crossover between Fermi and Bose insulators. [S0031-9007(98)07201-9]

PACS numbers: 74.20.—z, 71.30.+h, 71.55.Jv, 74.76.—w

Analysis of the effect of randomness on the superconsional disordered fermion model via the quantum Monte
ducting state has a long history [1], beginning with Ander-Carlo (QMC) and maximum entropy (ME) methods.
son’s observation [2] that in the presence of nonmagnetic The attractive Hubbard Hamiltonian, in the presence of
disorder the Cooper wave function can be constructed byandom site energies is
replacing(k T, —k |) pairs by an appropriate combination

of time reversed, but still extended, eigenstates. Recent 7 — _ > (c;r(erg + ijfocig) - Z(:““ — vy

theoretical work [3] has attempted to understand experi- (o i

ments [4] on the superconducting-insulator (SC-I) tran- | 1

sition in thin films. Here, the superconducting phase is - |U|Z<”“ B 5)(”” - 3>' @)
1

destroyed by strong disorder which localizes the electrons
entl_rely. _Numencal work [5] has _focused on boson mOO.I'Here cis IS a fermion destruction operator at sitavith
els in which coherence of the pair phase is the central IS20in oo and the chemical otential fixes
sue, and the role of fluctuations in the pair amplitude isP 7 Mie = CioCio, : P .
suppressed. Granular systems migh b welldescrbed (° 2630° Gensify The sie energess are nde,
such preformed Cooper pairs, and, furthermore, scaling ag

guments suggest universal conductivity might find a natu-_V/z’ V/2]. _The mteracuon_has been written in pErncIe-
ral explanation within boson systems [3]. hole symmetric form so that = 0 correspondst(:) = 1

Despite the successes of numeric studies of interactin ,t ally gr;](?)T WhenV = 0. TQe Iattlc;e Sllm(lp IS (I)ve.r
disordered Bose systems, it is clear that explicit calcu- e\?\; ne|g= c;r S'ttﬁs on ﬁ.thp |menS|oPa S‘}“tﬁfe :tt'cﬁ'
lations for itinerant electron models, in which pairs Cantoniaii%%e tchlre dgtgrqrﬁilr:aﬂggl\/lpéofneertke(fdcil1]ISPrs\r/ril(I);Js
break apart, are essential. Experimentally, there is evi- using the C
umerical studies of the clean model have determined the

dence for both SC-I transitions to a bosonic state [6] an hase diagram [12] by a finite-size scaling analysis of the
to a fermionic state [7], distinguished by the existence oP diagram | 12] by . . 9 y
equal time pair-pair correlation functions,

lack of an energy gap, respectively, in the insulating phase:

There is currently considerable controversy regarding the . 1 " " -

meaning of the two insulating phases seen experimentally Ps(j) = N Z<Ai+in ) Aj = cjegg. - (2)

[8]. Theories implicating both bosons [9] and fermions !

[10] exist. The phase diagram consists of a state with simultaneous

In this paper we describe the evolution of the single-charge density wave (CDW) and superconducting corre-
particle density of states for the disordered, attractive Hublations atT = 0 and half filling, and a finite temperature
bard Hamiltonian, a model which can interpolate betweerKosterlitz-Thouless transition (with a maxima} =~ 0.1¢
Bose and Fermi limits. We show that increasing disor<for |U| = 4t) to a phase with power law decay of pairing
der destroys long range pairing correlations and drives aorrelations off half filling. In this paper we will study
superconducting-insulator phase transition. However, théllings (n) = 0.875 for which strong CDW correlations
density of state®v(w) shows a gap which closes with the are absent and the transition temperature to the SC phase
destruction of superconducting long range order for relais nearly maximal.
tively weak couplings yet retains a gap beyond the critical In Fig. 1 we show the suppression of long range correla-
disorder strength for larger couplings. Sweeps across th@ons in P,(j) with increasing disorder strength. A finite-
disorder-interaction phase diagram allow us to locate quarsize scaling analysis of the structure factor determines the
titatively the critical coupling strengths for gap and pair or-critical value V. = (3.25 * 0.2)r for the destruction of
der formation in a set of representative cases. This is ththe superconducting staté/. can also be identified by the
first computation of the density of states in a finite dimen-superfluid densityD, and the conductivity [13]. These
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2 we expect disorder to broaden and eliminate the supercon-
. T T :
S| U=-4.0 T=0.10 <n>=0.875 ducting gap as well. .
The strong-couplings = 0, limit also can be solved
analytically. For a single site,
~ S 6(r) = e BU/4o=TA 4 ,BU/A+v) ,—7A,
= 7 2(eBU/4 coshBu; + e BU/M) 7
= (1 + o~B Yo BU/A
0 N(w) = Slw — A
8 L (@) 2(eBU/4 coshBu; + e BU/M) (@ )
1 + ¢ BANBU/ATY)
(L4 e PR)elm™ s~ AL).
2(eBU/4 coshBu; + e BU/4)
o 4)
0

Here A. = *U/2 + v;. After disorder averaging, the
two delta functions in the density of stat@&(w) are
FIG. 1. The equal time pair correlatioR,(j) is shown at broadened to two distributions centered abodt/2, each
T = 0.10 as a function of separatioj for different degrees with width V. WhenV = U these merge, and the gap in
of disorder. P,(j) remains finite at largg for V. = 2.0, but  N(w) at w = 0 is closed. However, the thermal factors
goes to zero rapidly witlj at v = 4.0. greatly suppres®V(w) nearw = 0. At ¢ = 0 there is
no long range pairing order, so that this “pseudogap”
quantities give consistent value®, = (3.2 = 0.7)r and  in the density of states reflects the tendency for on-site
V. = (3.5 = 0.5)t, respectively, for the critical disorder. singlet formation. We have shown that our QME
The density of states is a quantity which, like the ME procedure accurately reproduces the analytic result
conductivity, is directly accessible experimentally. ItsEq. (4) as a function of temperature, disorder strength, and
evaluation requires an inversion of the integral relation, interaction strength [18]. A central conclusion of our work
+o —or is that this pseudogap behavior persists far from the strong-
G(r) = % D (ep(m)ef(0)) = f dw %2\7_(;;)’ coupling limit as the hopping is turned on.
P o We now study the crossover between these two pos-
3) sible types of effect of disorder oW (w) in the full
between the density of statéé(w) and the imaginary model. In Fig. 2 we show the evolution of(w) with
time dependent Green’s functi@i(r). We do this using increasing interaction strengtl/| at fixed disorde’V =
Bryan’s method [14] and classic maximum entropy [15],2r. N(w) evolves from its gapless, noninteracting form
using the full imaginary-time covariance matrix. to possessing a well-formed gap|at| = 4¢. Similarly,
Although this approach is fairly well developed for in Fig. 3 we show the evolution a¥(w) with increasing
clean systems, the inclusion of disorder raises a numbefisorderV, at fixed values of the interactiohl/| = 4z.
of new questions of principle. The proper treatment ofin contrast to the noninteracting case where increasing
errors and correlations in the QMC data was the central results in the expected broadening Mfw), here the
achievement of the ME approach [16], and itis not obviousyap in N(w) is remarkably robust. Note the values of
how additional fluctuations from disorder averaging will v are well beyond the point where the superconducting-
affect the procedure. Therefore, we have checked ounsulator transition has occurred, as indicated by the results
calculation against analytic results both at weak and strong Fig. 1 and related measurements [13]. In the repulsive
coupling. Besides verifying the numerics, the behaviorHubbard model at the same value Of/t the gap in
in these two limits also presages the two distinct types oV () requires thatong rangeantiferromagnetic order be
insulating behavior we see in the full model. present, specifically, the correlation lengtih must exceed
In the noninteracting limit we can diagonalize the the lattice size [19]. In contrast, here we find that a gap
Hamiltonian and obtaitk,,, the single-particle eigenener- in N(w) persists despite the clear destruction of such long
gies, and thenct (w) = %Za 6(w — E,). Inthislimit range order.
the determinant QMC method computes the imaginary How can we interpret these results? In the weak-
time fermion Green'’s function exactly. Tests of the ME coupling limit, disorder broaden€(w) at all energies. In
approach in the clean case require that some noise be addealticular, the superconducting gap M(w) is closed at
to the exactG(r) coming from the QMC [17]. In the the same point where disorder destroys the long range pair
random case, thiad hocnoise does not need to be added,correlations. This closing of the gap is indicative of the
since G(7) already has error bars from disorder averag-predominance of fermionic elementary excitations in the
ing. We find that the ME approach exactly tracks theinsulating phase. In the strong-coupling limit, the density
disorder-induced broadening 8f(w) [18]. For smalllU|  of states is not broadened by disorder near= 0 and
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FIG. 2. The density of stated/(w) at t = 1, T = 0.125,
V =2, |U|=1,2,3,4 on an8 X 8 lattice. For sufficiently
small |U|, scattering by the disorder inhibits phase coherencé,
and the superconducting gap is destroyed. A superconducti
gap forms with increasing interaction strendth A study of
the pair correlationg’,(j) indicates that gap formation occurs
precisely with the onset of superconductivity.

FIG. 3. The density of statev(w) at t =1, U = —4,

= 0.125, V = 0.0, 2.0, 4.0 on an8 X 8 lattice. A study
the equal time pair correlation shows that fof <

. = 3.5 the system is a superconductor. Fgr= V. the

system is an insulator. The gap iN(w) persists even

after long range pair correlations, and superconductivity, are

destroyed. Furthermore, there is no enhancemeX(ia) as

one approacheg,. from either side, indicating that the system

. . . is not a Fermi liquid at the SC-BI transition.

a pseudogap survives. The results of Fig. 3 imply that

already at a value of interaction stren§gh = 47 which is

only one-half the bandwidtiy = 8¢, the superconducting tion [21]. It is possible that the attractive Hubbard model

gap is robust to disorder. In previous work [20], it was will exhibit universal resistivity only in the Bose-insulator

found that atv = 0 and|U| = 4t the spin susceptibility regime, though considerable further work needs to be done

exhibits a reduction at low temperatures, indicative ofto settle this issue.

Bose-like behavior, despite the fact that the temperature

dependence of the chemical potenfidll’) is still clearly

that of a degenerate Fermi system. We conclude here that 10 . —
for an interaction strength as low Hg| = 4¢, the density -
of states reflects Bose-like character atlall As shown 8 L 4

in Fig. 3, at either side of the critical disord&f for the
destruction of long range order in this coupling regime,
there are no indications of fermionic excitationsNifw ).

Bose Insulator

The phase diagram is shown in Fig. 4. For weak in- > Fig.5
teractions, there is a SC-Fermi insulator (SC-FI) transition 44 .
with disorder as seen in one class of experiments [7]. Fora | Fermi .|
stronger, but nevertheless intermediate coupling, the phase )  Insulato Fig2 |
diagram already exhibits the SC-Bose insulator (SC-BI) s duct
transition seen in another class of experiments [6]. The upqreonductor
Bose and Fermi insulators are distinguished by the pres- e 2' — é

ence or absence, respectively, of local Cooper pairs. Such ul /¢
pairs reveal themselves in turn in gaps in quantities like

N(w) and the uniform spin susceptibility [13]. We have FIG. 4. Phase diagram as a function of disordefs and
established the insulating character of the phase at intermggl®-action strengthlU/|/z. The solid circles indicate the

diate couplingsl/ = —3. —4. —6 through a direct evalu- ocation of the entry into the superconducting phase as

) pling AR g ; determined by our simulations. The remainder of the solid

ation of the conductivity [13]. From Eq. (4) it follows that jine indicates an estimate of the location of the boundary of the
for small r the pseudogap iV (w) opens even for very superconducting region. The arrows correspond to Figs. 2 and
small|U|/V at largeg, indicating that the FI-BI crossover 3. open triangles indicate gapped regions while closed triangles
has the trajectory shown [18]. Theoretically, a univer-ndicate no gap inV(w). In the superconducting regime the

S . : air correlations have long range order and there is a gap in
sal resistivity is predicted by a bosonic treatment of theﬁ,(w)_ In the insulating p?haseg there is no pair long ?anpge

transition [9]. It has been suggested that the presence @fder. The hatched region demarks schematically the crossover
fermions causes nonuniversal properties at the SC-| trangbetween the Bose and Fermi insulators.
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