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Revisiting the Theory of Finite Size Scaling in Disordered Systems: » Can Be Lessthan 2/d
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For phase transitions in disordered systems, an exact theorem provides a bound on the finite size
correlation length exponenizgs = 2/d. It is believed that the intrinsie satisfies the same bound.
We argue that the standard averaging introduces a noise e diverging length scale. For = 2/d
self-averaging breaks dowmlisconnectingr from vgg, and the bound applies only for the latter. We
illustrate these ideas on two exact examples, with 2/d. We propose a new method of disorder
averaging, which is able to capture the intrinsic exponents. [S0031-9007(97)04880-1]

PACS numbers: 75.10.Nr, 05.70.Fh, 72.15.Rn, 75.40.Mg

Using a very general formulation, Ref. [1] presented an We now argue that the bound obtained in Ref. [1] is
exact theorem, which puts constraints on the finite sizenly generated by the noise introduced by the “grand
correlation length exponentgs of a large class of dis- canonical averaging.” Different choices, such as using
ordered systemsrgs = 2/d, whered is the dimension. canonical averaging, produce different bounds. The theo-
This relation is often referred to as the quantum Harrem of Ref. [1] considers a random system where a
ris criterion [2]. While many investigations found expo- phase transition is induced by changing the concentration
nents in accordance with this bound, there is an increasing of site (or bond) impurities. Letr be any event
number of results in contradiction with it. In particular, depending on disorder realizations in a finite volume, with
in a model for charge density waves exact calculationprobability (K). This P(K) is calculated byaveraging
yielded» = 1/2 below four dimensions [3], and numeri- over all disordered configurations, and selecting those
cal studies on 2D disordered Bose-Hubbard models foundompatible with Y. Averaging is performed in the
v = 0.7 [4]. Experimentally the Bose glass transition of grand canonical way, since fluctuations in the density of
helium in aerogel [5], and the localization transition in impurities are allowed. From these premises the exact
doped semiconductors [6] seem to violate this bound. Istatementd P(K)/dK| < constX /N follows, whereN
this paper we argue that the standard procedure of disorder the system size. A closer look at the proof reveals
averaging introduces a noise andextrinsiclength scale, that this result is derived solely from the concentration
resulting in thevgs = 2/d bound. For models where the fluctuations of the impurities, which werexternally
intrinsic v is less thar2/d therefore the two exponents introduced in the averaging proceésee the last equation
are necessarily different. The underlying physical mechaef the proof in Ref. [1]). Thus the bound ¢aP(K)/dK |
nism of this difference is thbreakdown of self-averaging does not relate to the intrinsic properties of the system
in systems withv < 2/d. In agreement with this picture, under investigation. It only reflects the “resolution” of
the equivalence of these exponents has been demonstratbeé grand canonical averaging. In other words, because
only in specific cases witkh = 2/d [1]. of the presence of the density fluctuations, the minimal

To start our considerations of random systems, weesolvable change ik is dK o= 1/4/N. The probability
chose the same type of disorder used by Ref. [1]: & can change at mo#? (1), immediately explaining the
binary distribution for, say, a disordered site energy.above bound.

Typically, physical quantities are calculated by averaging On the other hand, if one uses canonical averaging, then
over different disorder realizations. For calculationalthe above inequality does not apply. For, in contrast to
convenience, the standard method is analogous to thle previous case, the number of impurities is now well
“grand canonical” approach: impurities are put on eactdefined. In the present binary example, the resolvable
site with a given probability and the averaging is carried change ofK is bounded only by its minimum allowed
out for all possible concentrations of impurities and theirincrement,1/N. Hence,|dP(K)/dK| = N. Along the
configurations. An alternative method, which could belines of Ref. [1], the inequalityrs = 1/d now follows.
termed the “canonical” approach, keeps the number of\s before, this inequality is characteristic of the canonical
impurities fixed, and the average is taken only over theaveraging only, and does not impose any restriction on the
possible configurations of these impurities. For infiniteintrinsic exponent of the physical system. The physical
systems the two methods are equivalent. The densitseason behind this is that both averaging procedures
fluctuations in the grand canonical method, howeverjntroduce anew characteristic length scalevhich has the
introduce an extra noise. This noise vanishes in theotential to obscure the intrinsic correlation length of the
infinite system, but it may alter the results of the finite physical system.

size scaling. The “canonical averaging” strongly reduces While these considerations were presented in the con-
this noise by excluding density fluctuations. text of finite size scaling, our results are relevant to

5130 0031-900797/79(25)/5130(4)$10.00 © 1997 The American Physical Society



VOLUME 79, NUMBER 25 PHYSICAL REVIEW LETTERS 22 BCEMBER 1997

disordered mesoscopic experiments where fiNiis itself ~ aging procedure eliminates this noise by identifying the
of interest and the choice of grand canonical or canonicatritical value of the control parametdf! for each dis-
averaging is determined by the setup. order realizationwhich it most likelycorresponds to. In

It is also important to note that the assumption ofpractice this might be difficult, and we return to this ques-
a binary disorder plays a crucial role in deriving thetion later. For the moment, we only assume that it is pos-
above bounds. While the proof was extended to somsible to identify aK!. We propose that the natural control
continuous distributions [1], exceptions exist too. To segarameter of the critical behavior s = (K — K!)/K!.
this, consider the following simple example, motivatedThe act of averaging should then be performed for the
by the quantum phase transition between the so-callesamples with the sama.
Mott-insulator and Bose-glass phases, which takes place We propose to adopt the following finite size scaling
in interacting Bose systems with site disorder. At thishypothesis for a generic physical quantidy
transition the renormalization group flows are controlled - _
by a fixed point withzero hopping strength [7], thus the O(L,4) = Lq(LA"), (3)

system reduces to a collection of independent sites witiyhere ¢(z) is a universal scaling function, and » are
random energies. Let the distribution of the site energyhe critical exponents fo@, and the inherent correlation

€ € [0,K] be length ¢ « A~”. Here we assumed that the scaling
a + 1 N behavior ofQ is characterized by a single length scale.
P(e) = W(K — % (1) This is a reasonable assumption even for disordered

with @ > —1. We generateN independente; (i = Systems where the “typical” and “average” correlations

1,...,N) from the above distribution. We define the have different exponents [8]: in this case one has to
finite-size event’ to occur, wherall ¢;’s are smaller than choose a physical quantit9 which is connected to one

a given valueu € (0,K]. We fix the value ofu, and  type of fluctuation only. Note that some aspects of Eq. (3)
drive the transition by changing. As required by the are already practiced in numerical studies: sizable noise
theorem of [1], the probability? of ¥ happening is finite red_uctlon is customarily reached by adj_ustlng the random
at the critical value of the disordek, = w. It goes to variablesafter they are generated, for instance, to keep
zero exponentially with the system si2e for K > k..  their mean value constant.

Close to the transition, fof = (K — K.)/K. < 1, this Next we assume the validity of Eq. (3) and perform
probability is the standard finite size scaling, to demonstrate how that
P(N.§) ~ o No! ) procedure’s inherent noise can mask the true critical

behavior. Some of the key results of the analysis are:
A characteristic length scalg; can now be defined as (j) we find that the exponent of the intrinsic correlation
a function of §. It is determined from the system size |ength » might be different fromwgs. Therefore the
asN; = &f, whereP(Ny, 8)/P(Nf,0) ~ 1/e. Defining  theorem of Ref. [1] does not provide constraints on the
a critical exponent ag; « § " one arrives atgs = intrinsic exponenw. (ii) In particular,» can beless than
(¢ + 1)/d. Fora < 1, vgs is less thar2/d. While we 2/d. In this case typicallyrs = 2/d.
considered a concrete example, we emphasize that this The standard finite size scaling procedure [9] in dis-
result can be relevant faany transition driven bylocal  ordered systems calls for calculating a physical quantity
singularitiesin the action. 0, such as the critical susceptibility, for different val-
Motivated by the above observations, we now attemplies of N and K, the system size and control parameter,
to construct a modified finite size scaling procedure. Ineach time performing the calculations for a number of
contrast to the above described averaging methods, thifisorder realizations. Averaging over the disorder yields
new correlated averaginghas the potential to access (Q(K)), and the critical coupling, is then identified, for
the inherent exponents of the system. Let us stafhstance, from a crossing pattern [10]. Requiring the col-
by observing that anygiven disorder realization in a |apse of the data when plotted as a functionZof” s,
finite systemcould have been generated from disorderwheres = (K — K.)/K., determines the exponents.
distributions characterized by sange of parameters,  To make contact between the standard scaling proce-
corresponding to aangeof the critical control parameter dure and Eq. (3), a relation between the unigyend the
valueK.. This raises the problem efhich K. to usein  fluctuatingK’ has to be constructed. A simple represen-
a finite size scaling analysis. tation of the inherent noise, or uncertainty, is to assume
The standard procedure answers this question by ashe validity of the central limit theorem fak’
suming that one can use a sind{e for all samples gen-
erated from the same distribution. However, the above A=+
argument suggests that the very same sample may be the
realization of distributions with different parameters, lead-wherex is a random variable with a distribution width of
ing to an inherent noise in the procedure, similar to the®(1). Here D measures the scatter K, and é is the
above considered binary examples. Toerelated aver- distance from the average critical poikit.

D
A (4)
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The standard procedure neglects the fluctuationsof asymptoticslarge 6 and small system sizes. For weak
which is equivalent to averaging@ over the random disorder P < 1) this window, in fact, might be wide
variablex of Eq. (4), enough for practical purposes. To reiterate, however,

SLA2\Y studies concentrating on the asymptotic region are bound
(@) = L‘y<q<D"L1‘d”/2(x + ) >> (5)

to seevgs = 2/d.
In the case ofv > 2/d the standard procedure is
Here thex average is denoted by .>’ Corresponding to Capable of aCCGSSing the intrinsic it can be obtained
the standard averaging procedure, as opposed,tthe from (Q) by increasing the system size to the extent
correlated averaging of the new procedure in Eq. (3).  of 8L4/?/D > 1, but keepings”L o« O(1). This again
First we analyze the critical point itself, then we shallimplies avoiding the “nonscaling” region arourgd= 0.
proceed to extract the critical behavior of the correlationor strong disorder and small available system sizes,

length. Atd = 0 the scaling form forQ is one can end up again with large arguments q6f),
B vovyl—dv)2 and consequently in the scaling regime described gy
(Q) = L {q(D"x"L ) (6) andy [Eq. (7)]. There are several additional crossover
For » > 2/d the argument of the scaling function ap- regimes which can be studied based on Eq. (5).
proaches zero with increasing system size, andLthie- It is far from trivial to identify the infinite system'&’

pendence of thaveragedquantity(Q(L)) is characterized from the finite sample. A solution might be suggested by

by theintrinsic exponenty. Here we use the customary recalling that for ordered classical magnets, the maximum

assumption that the universal scaling functigfy) ap- of the susceptibility of a finite size sample is shifted as

proaches a finite value as— 0. T.(L) — T.(») « L™'/7. Scaling then can be performed
In the » < 2/d case, however, the argument @fz)  in terms of 7.(L), resulting in the correct exponents. It

goes to large values, probing deeply noncritical regionsis natural to expect that the same holds true iqgr

even though the system is assumed toaberiticality. K/ (L) — K/ () « L™/, whereK/(L) is extracted from

To highlight the consequences of this, we proceed witta specific feature of a critical quantity of tHmite-size

a generic form for the asymptotic behavior of the scalingsystem Using this K/ (L) in our new scaling approach

function, adopting;(z) = z #. From Eq. (6XQ) « L=,  should provide the correct exponent

where vy =y + B(1 — dv/2). Clearly the L depen- We are thus left with the task of identifying (L) of

dence of Q) is governed by an exponemt differentfrom  a finite system. For many quantum systemg'at 0 a

the intrinsicy. reasonable proposition fak (L) might be the value of
Next we develop an understanding of the region inK, where the gap to the first excitation vanishes or has a

the proximity of the critical point, i.e., the case of finite minimum. For classical systen#§’(L) may be identified

5. Let us first focus onv < 2/d. From Eq. (5) one Where a critical susceptibility exhibits a maximum.

identifies two scaling regions, governed two different To demonstrate the above ideas, consider strongly in-

characteristic diverging length scales. teracting bosons in a random potential at zero tempera-
For large system sizes inevitably”L!~¢"/2 > 1, so  ture. In Ref. [7] renormalization flows were generated by

the argument ofg(z) again extends to large values. integrating out the sites with highest excitation energies.

Utilizing the previous asymptotic model form, For infinite range hopping the renormalization group (RG)
ey ar sy d)2 equations areexact In particular, at the Mott-insulator
Q) = L 74(8L7), ™ to superfluid transition weak disorder is irrelevant and

from which a length scale can be identified, characterizing = 1/d.

the finite size scaling ofQ), averaged in the standard We carried out the finite size scaling analysis of the av-
way. It diverges with an exponentgs = 2/d even erage local susceptibility at weak but finite disorder for
though the intrinsic exponent is less than2/d. This  system sizesV = 64, 128, and 256. First we used the
result now demonstrates, in general, what has beestandard averaging procedure (inset of Fig. 1), and we ob-
observed earlier for the binary example: the standard, dainedvgs = 3/d after averaging over 1024 realizations
grand canonical averaging introduces a noise, which iof a uniform disorder distribution of the random poten-
turn generates a new length scale and a corresponding ndigl. The higher-than-expected value ofs is related to

exponent into the analysis. the singularity of the scaling function. Figure 1 shows
The other scaling region is reached wh&h?/2/D >  the same quantity scaled by usiig (L) extracted from
1. In this limit the divergence of the susceptibility for each sample sepa-
R ) rately. The scaling is convincing, and yields the exact ex-
(@) = L7q(8"L). (8) ponentr = 1/d. The exhibited curves were obtained by

As is known, for large values of”L, the » exponent averaging over much fewer samples than before, only 16,
is not accessible by finite size scaling [9], hen8eL  yet the scaling region extends by more than an order of
should be kept around unity. Therefore the determinatiomagnitude further in terms of the scaling variahié),

of v requires the study of the regioaway from the demonstrating a very effective noise reduction.
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will be roughly independent. However, if a uniform
I/X partitioning is forced on the system, those boxes extend
across the variable partitioning, and thus will exhibit
strong correlations. Thus the uniform boxesnnot be
assumedo be independent realizations of the disordered
system. Since this assumption is the foundation of the
standard disorder averaging procedure, we conclude that
for v < 2/d the central phenomenon is theeakdown of
self-averaging This manifests itself, for instance, in the
broadness of the distribution of some (not all) physical
quantities. A similar conclusion was reached for short
length scales in [13].
In summary, we reinvestigated the theory of finite
‘ > size scaling in disordered systems. We found that the
0 1.6 AN standard averaging procedure introduces a new diverging

FIG. 1. Scaling plot of the inverse susceptibility using thelength scale into the problem, therefore the finite size

novel and the standard (inset) averaging procedure for systeffaling €xponentrs may be unrelated to the intrinsic
sizesN = 64, 128, and 256. v. We constructed two explicit examples, whegact

calculations proved that the intrinsie < 2/d. We
In some numerical studies, such as in Ref. [4}rg < proposed an alternative averaging, which achieves a

2/d has been reported, using the traditional averagingemarkable noise reduction and therefore is capable of
procedure. We would like to emphasize that this finding?ccessing the intrinsic exponents of.the physmal problem.
can be perfectly accommodated in the present theory. W€ acknowledge useful discussions with L. Chayes,

First, our analysis doesot suggest thatgs must be . Giamarchi, .D. Huse, A.. van Otterlo, H. Rieger, S.'
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scenario. If, for instance, the fluctuations &f scale esearch was supported by NSF DMR-95-28535.
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