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Revisiting the Theory of Finite Size Scaling in Disordered Systems: n Can Be Less than 2yyyd
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For phase transitions in disordered systems, an exact theorem provides a bound on the finite size
correlation length exponent:nFS $ 2yd. It is believed that the intrinsicn satisfies the same bound.
We argue that the standard averaging introduces a noise and anewdiverging length scale. Forn # 2yd

self-averaging breaks down, disconnectingn from nFS, and the bound applies only for the latter. We
illustrate these ideas on two exact examples, withn , 2yd. We propose a new method of disorder
averaging, which is able to capture the intrinsic exponents. [S0031-9007(97)04880-1]

PACS numbers: 75.10.Nr, 05.70.Fh, 72.15.Rn, 75.40.Mg

Using a very general formulation, Ref. [1] presented an
exact theorem, which puts constraints on the finite size
correlation length exponentnFS of a large class of dis-
ordered systems:nFS $ 2yd, whered is the dimension.
This relation is often referred to as the quantum Har-
ris criterion [2]. While many investigations found expo-
nents in accordance with this bound, there is an increasing
number of results in contradiction with it. In particular,
in a model for charge density waves exact calculations
yieldedn  1y2 below four dimensions [3], and numeri-
cal studies on 2D disordered Bose-Hubbard models found
n . 0.7 [4]. Experimentally the Bose glass transition of
helium in aerogel [5], and the localization transition in
doped semiconductors [6] seem to violate this bound. In
this paper we argue that the standard procedure of disorder
averaging introduces a noise and anextrinsiclength scale,
resulting in thenFS $ 2yd bound. For models where the
intrinsic n is less than2yd therefore the two exponents
are necessarily different. The underlying physical mecha-
nism of this difference is thebreakdown of self-averaging
in systems withn , 2yd. In agreement with this picture,
the equivalence of these exponents has been demonstrated
only in specific cases withn $ 2yd [1].

To start our considerations of random systems, we
chose the same type of disorder used by Ref. [1]: a
binary distribution for, say, a disordered site energy.
Typically, physical quantities are calculated by averaging
over different disorder realizations. For calculational
convenience, the standard method is analogous to the
“grand canonical” approach: impurities are put on each
site with a given probabilityp and the averaging is carried
out for all possible concentrations of impurities and their
configurations. An alternative method, which could be
termed the “canonical” approach, keeps the number of
impurities fixed, and the average is taken only over the
possible configurations of these impurities. For infinite
systems the two methods are equivalent. The density
fluctuations in the grand canonical method, however,
introduce an extra noise. This noise vanishes in the
infinite system, but it may alter the results of the finite
size scaling. The “canonical averaging” strongly reduces
this noise by excluding density fluctuations.

We now argue that the bound obtained in Ref. [1] is
only generated by the noise introduced by the “grand
canonical averaging.” Different choices, such as using
canonical averaging, produce different bounds. The theo-
rem of Ref. [1] considers a random system where a
phase transition is induced by changing the concentration
K of site (or bond) impurities. LetY be any event
depending on disorder realizations in a finite volume, with
probabilityP sKd. ThisP sKd is calculated byaveraging
over all disordered configurations, and selecting those
compatible with Y . Averaging is performed in the
grand canonical way, since fluctuations in the density of
impurities are allowed. From these premises the exact
statementjdP sKdydKj # const3

p
N follows, whereN

is the system size. A closer look at the proof reveals
that this result is derived solely from the concentration
fluctuations of the impurities, which wereexternally
introduced in the averaging process(see the last equation
of the proof in Ref. [1]). Thus the bound onjdP sKdydKj
does not relate to the intrinsic properties of the system
under investigation. It only reflects the “resolution” of
the grand canonical averaging. In other words, because
of the presence of the density fluctuations, the minimal
resolvable change inK is dK ~ 1y

p
N . The probability

P can change at mostO s1d, immediately explaining the
above bound.

On the other hand, if one uses canonical averaging, then
the above inequality does not apply. For, in contrast to
the previous case, the number of impurities is now well
defined. In the present binary example, the resolvable
change ofK is bounded only by its minimum allowed
increment,1yN. Hence,jdP sKdydKj # N. Along the
lines of Ref. [1], the inequalitynFS $ 1yd now follows.
As before, this inequality is characteristic of the canonical
averaging only, and does not impose any restriction on the
intrinsic exponentn of the physical system. The physical
reason behind this is that both averaging procedures
introduce anew characteristic length scale, which has the
potential to obscure the intrinsic correlation length of the
physical system.

While these considerations were presented in the con-
text of finite size scaling, our results are relevant to
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disordered mesoscopic experiments where finiteN is itself
of interest and the choice of grand canonical or canonical
averaging is determined by the setup.

It is also important to note that the assumption of
a binary disorder plays a crucial role in deriving the
above bounds. While the proof was extended to some
continuous distributions [1], exceptions exist too. To see
this, consider the following simple example, motivated
by the quantum phase transition between the so-called
Mott-insulator and Bose-glass phases, which takes place
in interacting Bose systems with site disorder. At this
transition the renormalization group flows are controlled
by a fixed point withzerohopping strength [7], thus the
system reduces to a collection of independent sites with
random energies. Let the distribution of the site energy
e [ f0, Kg be

Psed 

a 1 1

Ka11
sK 2 eda

, (1)

with a . 21. We generateN independentei (i 

1, . . . , N) from the above distribution. We define the
finite-size eventY to occur, whenall ei ’s are smaller than
a given valuem [ s0, Kg. We fix the value ofm, and
drive the transition by changingK . As required by the
theorem of [1], the probabilityP of Y happening is finite
at the critical value of the disorder,Kc  m. It goes to
zero exponentially with the system sizeN for K . Kc.
Close to the transition, ford  sK 2 KcdyKc ø 1, this
probability is

P sN , dd . e2Nda11

. (2)

A characteristic length scalejf can now be defined as
a function of d. It is determined from the system size
asNf  j

d
f , whereP sNf , ddyP sNf , 0d , 1ye. Defining

a critical exponent asjf ~ d2nFS one arrives atnFS 

sa 1 1dyd. For a , 1, nFS is less than2yd. While we
considered a concrete example, we emphasize that this
result can be relevant forany transition driven bylocal
singularitiesin the action.

Motivated by the above observations, we now attempt
to construct a modified finite size scaling procedure. In
contrast to the above described averaging methods, this
new correlated averaginghas the potential to access
the inherent exponents of the system. Let us start
by observing that anygiven disorder realization in a
finite systemcould have been generated from disorder
distributions characterized by arange of parameters,
corresponding to arangeof the critical control parameter
valueKc. This raises the problem ofwhich Kc to usein
a finite size scaling analysis.

The standard procedure answers this question by as-
suming that one can use a singleKc for all samples gen-
erated from the same distribution. However, the above
argument suggests that the very same sample may be the
realization of distributions with different parameters, lead-
ing to an inherent noise in the procedure, similar to the
above considered binary examples. Thecorrelated aver-

aging procedure eliminates this noise by identifying the
critical value of the control parameterKr

c for each dis-
order realizationwhich it most likelycorresponds to. In
practice this might be difficult, and we return to this ques-
tion later. For the moment, we only assume that it is pos-
sible to identify aKr

c . We propose that the natural control
parameter of the critical behavior isD  sK 2 Kr

c dyKr
c .

The act of averaging should then be performed for the
samples with the sameD.

We propose to adopt the following finite size scaling
hypothesis for a generic physical quantityQ,

Q̄sL, Dd  L2yqsLDnd , (3)

where qszd is a universal scaling function, andy, n are
the critical exponents forQ, and the inherent correlation
length j ~ D2n . Here we assumed that the scaling
behavior ofQ is characterized by a single length scale.
This is a reasonable assumption even for disordered
systems where the “typical” and “average” correlations
have different exponents [8]: in this case one has to
choose a physical quantityQ which is connected to one
type of fluctuation only. Note that some aspects of Eq. (3)
are already practiced in numerical studies: sizable noise
reduction is customarily reached by adjusting the random
variablesafter they are generated, for instance, to keep
their mean value constant.

Next we assume the validity of Eq. (3) and perform
the standard finite size scaling, to demonstrate how that
procedure’s inherent noise can mask the true critical
behavior. Some of the key results of the analysis are:
(i) we find that the exponent of the intrinsic correlation
length n might be different fromnFS. Therefore the
theorem of Ref. [1] does not provide constraints on the
intrinsic exponentn. (ii) In particular,n can beless than
2yd. In this case typicallynFS  2yd.

The standard finite size scaling procedure [9] in dis-
ordered systems calls for calculating a physical quantity
Q, such as the critical susceptibility, for different val-
ues ofN and K , the system size and control parameter,
each time performing the calculations for a number of
disorder realizations. Averaging over the disorder yields
kQsKdl, and the critical couplingKc is then identified, for
instance, from a crossing pattern [10]. Requiring the col-
lapse of the data when plotted as a function ofL1ynd,
whered  sK 2 KcdyKc, determines the exponents.

To make contact between the standard scaling proce-
dure and Eq. (3), a relation between the uniqueKc and the
fluctuatingKr

c has to be constructed. A simple represen-
tation of the inherent noise, or uncertainty, is to assume
the validity of the central limit theorem forKr

c

D  d 1
D

Ldy2
x , (4)

wherex is a random variable with a distribution width of
O s1d. HereD measures the scatter inKr

c , andd is the
distance from the average critical pointKc.
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The standard procedure neglects the fluctuations ofKr
c ,

which is equivalent to averaginḡQ over the random
variablex of Eq. (4),

kQl  L2y

*
q

√
DnL12dny2

µ
x 1

dLdy2

D

∂n
!+

. (5)

Here thex average is denoted byk· · ·l, corresponding to
the standard averaging procedure, as opposed toQ̄, the
correlated averaging of the new procedure in Eq. (3).

First we analyze the critical point itself, then we shall
proceed to extract the critical behavior of the correlation
length. Atd  0 the scaling form forQ is

kQl  L2ykqsDnxnL12dny2dl . (6)

For n . 2yd the argument of the scaling function ap-
proaches zero with increasing system size, and theL de-
pendence of theaveragedquantitykQsLdl is characterized
by the intrinsic exponenty. Here we use the customary
assumption that the universal scaling functionqszd ap-
proaches a finite value asz ! 0.

In the n , 2yd case, however, the argument ofqszd
goes to large values, probing deeply noncritical regions,
even though the system is assumed to beat criticality.
To highlight the consequences of this, we proceed with
a generic form for the asymptotic behavior of the scaling
function, adoptingqszd ~ z2b . From Eq. (6)kQl ~ L2g ,
where g  y 1 bs1 2 dny2d. Clearly the L depen-
dence ofkQl is governed by an exponentg, differentfrom
the intrinsicy.

Next we develop an understanding of the region in
the proximity of the critical point, i.e., the case of finite
d. Let us first focus onn , 2yd. From Eq. (5) one
identifies two scaling regions, governed bytwo different
characteristic diverging length scales.

For large system sizes inevitablyDnL12dny2 ¿ 1, so
the argument ofqszd again extends to large values.
Utilizing the previous asymptotic model form,

kQl  L2g q̂sdLdy2d , (7)

from which a length scale can be identified, characterizing
the finite size scaling ofkQl, averaged in the standard
way. It diverges with an exponentnFS  2yd even
though the intrinsic exponentn is less than2yd. This
result now demonstrates, in general, what has been
observed earlier for the binary example: the standard, or
grand canonical averaging introduces a noise, which in
turn generates a new length scale and a corresponding new
exponent into the analysis.

The other scaling region is reached whendLdy2yD ¿
1. In this limit

kQl  L2yqsdnLd . (8)

As is known, for large values ofdnL, the n exponent
is not accessible by finite size scaling [9], hencednL

should be kept around unity. Therefore the determination
of n requires the study of the regionaway from the

asymptotics: large d and small system sizes. For weak
disorder (D ø 1) this window, in fact, might be wide
enough for practical purposes. To reiterate, however,
studies concentrating on the asymptotic region are bound
to seenFS  2yd.

In the case ofn . 2yd the standard procedure is
capable of accessing the intrinsicn: it can be obtained
from kQl by increasing the system size to the extent
of dLdy2yD ¿ 1, but keepingdnL ~ O s1d. This again
implies avoiding the “nonscaling” region aroundd  0.
For strong disorder and small available system sizes,
one can end up again with large arguments ofqszd,
and consequently in the scaling regime described bynFS

and g [Eq. (7)]. There are several additional crossover
regimes which can be studied based on Eq. (5).

It is far from trivial to identify the infinite system’sKr
c

from the finite sample. A solution might be suggested by
recalling that for ordered classical magnets, the maximum
of the susceptibility of a finite size sample is shifted as
TcsLd 2 Tcs`d ~ L21yn . Scaling then can be performed
in terms ofTcsLd, resulting in the correct exponents. It
is natural to expect that the same holds true forKr

c :
Kr

c sLd 2 Kr
c s`d ~ L21yn , whereKr

c sLd is extracted from
a specific feature of a critical quantity of thefinite-size
system. Using thisKr

c sLd in our new scaling approach
should provide the correct exponentn.

We are thus left with the task of identifyingKr
c sLd of

a finite system. For many quantum systems atT  0 a
reasonable proposition forKr

c sLd might be the value of
K , where the gap to the first excitation vanishes or has a
minimum. For classical systemsKr

c sLd may be identified
where a critical susceptibility exhibits a maximum.

To demonstrate the above ideas, consider strongly in-
teracting bosons in a random potential at zero tempera-
ture. In Ref. [7] renormalization flows were generated by
integrating out the sites with highest excitation energies.
For infinite range hopping the renormalization group (RG)
equations areexact. In particular, at the Mott-insulator
to superfluid transition weak disorder is irrelevant and
n  1yd.

We carried out the finite size scaling analysis of the av-
erage local susceptibility at weak but finite disorder for
system sizesN  64, 128, and 256. First we used the
standard averaging procedure (inset of Fig. 1), and we ob-
tainednFS . 3yd after averaging over 1024 realizations
of a uniform disorder distribution of the random poten-
tial. The higher-than-expected value ofnFS is related to
the singularity of the scaling function. Figure 1 shows
the same quantity scaled by usingKr

c sLd extracted from
the divergence of the susceptibility for each sample sepa-
rately. The scaling is convincing, and yields the exact ex-
ponentn  1yd. The exhibited curves were obtained by
averaging over much fewer samples than before, only 16,
yet the scaling region extends by more than an order of
magnitude further in terms of the scaling variable,ND,
demonstrating a very effective noise reduction.
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FIG. 1. Scaling plot of the inverse susceptibility using the
novel and the standard (inset) averaging procedure for system
sizesN  64, 128, and 256.

In some numerical studies, such as in Ref. [4], anFS ,
2yd has been reported, using the traditional averaging
procedure. We would like to emphasize that this finding
can be perfectly accommodated in the present theory.
First, our analysis doesnot suggest thatnFS must be
greater or equal to2yd: this is only the most likely
scenario. If, for instance, the fluctuations ofKr

c scale
as L21yn , then the above analysis yieldsnFS  n, and
thus can be less than2yd. Apparently, this is the case in
the example of the Mott-insulator to Bose-glass transition
in Eq. (2). Second, as emphasized after Eq. (8), if the
fluctuations ofKr

c are small and the sample size is not too
big, then the intrinsicn can and will be observed in finite-
size scaling. Finally, this theory isnot addressingthe
problems associated with distributions with long power-
law tails [8] or multicritical fixed points [11].

What is then a possible physical framework to think
about the casen , 2yd? The usual approach imagines
dividing the sample to roughly independent blocks of
uniform size j [12]. For n , 2yd the fluctuations
of the “local” Tc ’s of the blocks are bigger than the
distance from the trueTc, therefore a self-consistent
picture of a sharp transition was believed to be impossible.
However, an appropriate modificationcan restorethe self-
consistency as follows. On the disordered side of such an
assumed transition the correlation length must be finite
everywherein the sample. Therefore even atn , 2yd

it should be possible to divide the sample tofinite but
unequalboxes by choosing their sizes to be the same as
the local correlation length. These variable size boxes

will be roughly independent. However, if a uniform
partitioning is forced on the system, those boxes extend
across the variable partitioning, and thus will exhibit
strong correlations. Thus the uniform boxescannot be
assumedto be independent realizations of the disordered
system. Since this assumption is the foundation of the
standard disorder averaging procedure, we conclude that
for n , 2yd the central phenomenon is thebreakdown of
self-averaging. This manifests itself, for instance, in the
broadness of the distribution of some (not all) physical
quantities. A similar conclusion was reached for short
length scales in [13].

In summary, we reinvestigated the theory of finite
size scaling in disordered systems. We found that the
standard averaging procedure introduces a new diverging
length scale into the problem, therefore the finite size
scaling exponentnFS may be unrelated to the intrinsic
n. We constructed two explicit examples, whereexact
calculations proved that the intrinsicn , 2yd. We
proposed an alternative averaging, which achieves a
remarkable noise reduction and therefore is capable of
accessing the intrinsic exponents of the physical problem.
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