PHYSICAL REVIEW B 72, 054524 (2005)

Ring exchange and phase separation in the two-dimensional boson Hubbard model
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We present quantum Monte Carlo simulations of the soft-core Bosonic Hubbard model with a ring exchange
term K. For values of K which exceed roughly half the on-site repulsion U, the density is a nonmonotonic
function of the chemical potential, indicating that the system has a tendency to phase separate. This behavior
is confirmed by an examination of the density-density structure factor at small momenta and real-space images
of the boson configurations. Adding a near-neighbor repulsion can compete with phase separation, but still does

not give rise to a stable normal Bose liquid.
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INTRODUCTION

The most commonly studied Hamiltonians of quantum
spins and bosons include kinetic energy in the form of two-
site exchange. However, it was realized early on that, for
lighter atoms, larger numbers of particles can permute their
positions, leading to ring exchange terms.' Interest in such
models subsequently developed for a number of reasons,
most recently as a result of the possibility of the existence of
a normal Bose liquid. Such a phase might reconcile appar-
ently contradictory observations in cuprate superconductors
in the pseudogap regime where there is evidence of local
pairing without superconductivity.>? Indeed, the magnitude
of ring exchange terms in high-7. materials could be a sig-
nificant fraction of the two-site exchange.*°

Over the past several years, considerable numerical effort
has been expended in looking at the low-temperature phases
of Hamiltonians including ring exchange.®~!! Interestingly,
while the normal Bose liquid has remained somewhat elu-
sive, a rich panoply of other behavior has been observed,
including striped order, Néel antiferromagnetism, valence
bond solids, and phase separation. The nature of the phase
diagram and of the phase transitions between the different
ordered phases remains an area of active inquiry.'> Very re-
cently it was proposed'? that ring exchange terms might be
engineered into cold atomic gases, opening up the possibility
that the effects of such terms could be studied in a situation
where they can be tuned systematically, and hence the theo-
retical predictions checked experimentally.

In this paper we will extend our previous work® on phase
separation in the boson Hubbard model with ring exchange.
We focus on two dimensions, since that is the lowest dimen-
sion allowing ring exchange processes, and it is the effective
dimension of the CuO, sheets of the cuprate superconductors
which have motivated much of the recent study of Bose lig-
uid phases. Our key conclusion is that when the ring ex-
change energy scale exceeds approximately one-half the on-
site repulsion, the ground state is thermodynamically
unstable to phase separation. Adding a near-neighbor repul-
sion can prevent phase separation, but the ground state al-
ways has either nonzero checkerboard or superfluid (SF) or-
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der. Because we use a breakup of the Hamiltonian in
constructing the path integral which has not been much em-
ployed before, we also describe some of the technical details
of the simulation, including the effectiveness of different lo-
cal quantum Monte Carlo (QMC) moves.

The most simple boson Hubbard model'* is

H=-1, (a;ai+ai'aj)+Uz ;= 1). (1)
(if) i

The operators a}',a- create (dgstroy) a boson on site j, and
obey commutation rules [a;,a;]=&;;. The number operator is
n j=a;-a ;- The hopping parameter 1 measures the kinetic en-
ergy and U the strength of the on-site repulsion. The sum (i)
is over near neighbors on a square lattice. In the limit U
— o this model maps onto the spin-1/2XY model, with the
magnetization playing the role of the Bosonic density. By
now, the 7=0 phase diagram of the boson Hubbard Hamil-
tonian is well known.!'#2° Away from commensurate filling,
the ground state is superfluid. At commensurate fillings, and
for sufficiently large U, a Mott insulator forms in which each
site is occupied by an integer number of particles.

Our goal is to consider the effect of a ring exchange term:

K=- K> (a,aga;aél + aia2a3a§). (2)
{r}

The ring exchange term acts on four site plaquettes {p}, de-
stroying two particles which lie along one diagonal, and cre-
ating them on the other (see Fig. 1). Because of the minus
sign in Eq. (2), the energy decreases when the particles are
exchanged. The basic qualitative picture behind the sugges-
tion that the ring exchange term might give rise to a normal
Bose liquid is that if one starts with a superfluid phase, K
introduces local vortices in which two particles jump in op-
posite directions. These local twists, if sufficiently favored
energetically, could compete with, and ultimately prevent, a
coherent long-range superflow of particles. At the same time,
such a hopping process increases (local) quantum fluctua-
tions, and would not be expected to make the system incom-
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FIG. 1. (Color online) The ring exchange term acts on each
square plaquette of our 2D lattice (a), and allows the exchange of
two particles from one diagonal (b) to the other (c).

pressible (a Mott insulator). Therefore one might have a nor-
mal Bose liquid.

As we shall see, we find that this ring exchange term
causes phase separation rather than a normal Bose liquid. It
is natural to attempt to resurrect the liquid by adding a longer
range repulsion which acts against particle clustering. The
most simple form is a near-neighbor repulsion:

V=V ;. (3)
(ij)

The effects of near-neighbor repulsion in the absence of ring
exchange have been well studied in the context of the boson
Hubbard Hamiltonian.”! They are perhaps most simply ascer-
tained by considering the hard-core limit and the equivalent
spin model. As commented earlier, the boson kinetic energy
corresponds to an XY spin coupling. V corresponds to a Z
coupling. Thus when V<2t the spin model is in the XY
universality class (a boson superfluid) and for V> 2t the spin
model is in the Ising universality class (a checkerboard
charge-density boson insulator). A considerable amount of
work has also been done on looking for supersolid phases
which combine superfluid and charge-density-wave (CDW)
order.?>?

QMC: PARTITION FUNCTION AS A PATH INTEGRAL

Our quantum Monte Carlo simulations are performed us-
ing a world-line algorithm with a decomposition involving
four-site matrix elements. We discuss the algorithm in detail
here because this decomposition, which is similar but not
identical to Ref. 24, is used considerably less frequently than
the more conventional approach which involves two-site ma-
trix elements,” especially for Hamiltonians involving ring
exchange, although stochastic series expansion approaches®®

are formally very similar. A specific issue we will address is
the effect of different local moves on the measurement of the
energy.

We begin by representing the partition function as a path
integral, in which ¢ #"* is the imaginary time evolution op-
erator, 0= 7= 8. The goal is to take the exponential of the
full Hamiltonian, which cannot be computed, and express it
in terms of exponentials whose numerical values can be writ-
ten down. In order to accomplish this, we write the full
imaginary time evolution operator as a product of infinitesi-

PHYSICAL REVIEW B 72, 054524 (2005)
mal evolution operators over short imaginary times A7

Z=TrePH= Tr(e‘Aﬂ%)M T=

< [®

(4)

Here M is chosen to be a sufficiently large integer so as to

make (A7)? times any two of the energy scales in H small, as
discussed further below.

We then divide the sum over all plaquette operators into
four classes depicted by the different shadings (colors online)
in Fig. 3. That is, the full Hamiltonian is written as

7:[=7:(]+7:(2+7:[3+7:{4, (5)
where
H,= 2 H, (6)
pen

groups together all plaquettes of a given shading. In order to
avoid overcounting the kinetic energy, on-site, and near-
neighbor interaction terms in the Hamiltonian we define

1 1
H,=K +5(7;,+V1,)+Zup (7)

with

i i
7,= —ta’ 1ap2+ap;ap4+ap1apg+ap2ap4+Hc)

K,=- K(a,,lagza:ﬁam +H.c.),

Z:{p = U[ﬁpl(ﬁpl — 1) + ﬁpz(ﬁpz - 1) + ﬁp3(ﬁp3 - 1)

+ ﬁp4(ﬁp4 - 1)],

Vp: V(ﬁplﬁp2+ﬁ[)3ﬁp4+ﬁplﬁp3 +ﬁp2ﬁp4)' (8)

It is important to emphasize that while plaquette operators
acting on neighboring plaquettes do not commute, all
plagette operators within the same shading do commute,
since they do not “touch.” This independence will enable us
to compute their exponentials.

Now we express each infinitesimal evolution operator as a
product:

e—ATH — e—A’i('H1+'H2+H3+'H4) ~ e—ATHle—ATHze—ATH3e—ATH4.
)
Substituting expression (9) in expression (4), we get
Z= TI'(E_ATH4€_ATH3€_ATH2€_ATH1)M. (10)

The errors made in breaking up ¢~2™, Eq. (9), go as the
commutator of the individual pieces, and therefore as (A 7)2.
It might be thought that the accumulation of the (A7)? errors
across the M imaginary time slices might lead to an error
linear in A7. However, the expectation value of any Hermit-
ian operator?’-?® has a Trotter error which is quadratic in A7.

To complete the evaluation of the trace, we work in the
basis of occupation numbers [{n}). Inserting a complete set of
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FIG. 2. The application of e propagates the boson occupa-
tions on the four spatial sites of the plaquette (a) in the imaginary
time direction, and can be thought of geometrically as converting
each spatial plaquette into a cube (b) whose bottom face contains
the boson occupations before the action of the operator, and whose
top face contains the boson occupations after the action of the
operator.

states I=3,,[{n}){{n}| between each pair of exponentials, we
get

M
z=> T {1} e-Aﬂ%4| (kY| e—AﬂA{}l {121

{nk} k=1

X<{nk+1/2}|e—Aﬂ:{2|{nk+1/4}><{nk+1/4}|e—Af7:tl ). (11)

The superscripts k appearing in the sets {n*} label the
imaginary time, emphasizing that a different complete set of
states has been introduced between each pair of exponentials.
Since operators acting on plaquettes with the same shading
commute, each matrix element in Eq. (11) can be written as
a product of four-site matrix elements,

({nq+1/4}|e‘“7:‘n|{nq}> =11 (7?‘1+1’4|e‘AT}A‘p|Pq>, (12)

(@)

where P? represents the state at imaginary time ¢ (g is a
multiple of :—1) of the four sites belonging to plaquette p, and
IL,, is a product over all matrix elements between times ¢
and g+1/4. The entire evolution is represented by an inter-
connected set of the cubes of Fig. 2(b), as illustrated in Fig.
3(b).

Since each 7:[1, conserves the sum of the boson numbers
on the four spatial sites, the occupation numbers living on
these cubes trace out continous “world lines” of particles
which wiggle and deform during their evolution. Further-
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more, because we are evaluating the trace of e~ P the occu-
pation numbers and associated world lines are periodic in
imaginary time. We will discuss the sampling of the expres-
sion for Z, and the associated conservation laws, in more
detail below.

Summarizing, the partition function takes the simple form
of a sum of products of four-site matrix elements,

M
Z= E H H <Pk+l/4|e—ATHp|7)k>. (13)
{pky k=1 p(k)

The imaginary time index k runs from 1 to M with step ﬁ.
Each matrix element in Eq. (13) can be computed by numeri-
cal diagonalization if we assume that occupation numbers
are never greater than 4. (This restriction is satisfied in all
simulations here, since the average densities studied are of
order unity.?”) Each site has five possible states and the num-
ber of different states for one plaquette is 5*=625. To com-

pute the exponential of ﬂp then requires the diagonalization
of a 625X 625 matrix.

SAMPLING OF THE PARTITION FUNCTION

In order to perform measurements, one needs to generate
sets of world lines with the Boltzmann weight given by the
summand of Eq. (13). This is done using a Metropolis algo-
rithm. One starts with straight world lines, then suggests lo-
cal deformations and accepts them with probability p
=min(1,R), where R is the ratio of the Boltzmann weight
after the move to that before. In the usual way, this satisfies
detailed balance. To ensure ergodicity of the algorithm, dif-
ferent kinds of moves have to be included, like pull moves
[Fig. 4(a)], “baby” pull moves [Fig. 4(b)], twist moves [Fig.
4(c)], and “baby” twist moves [Fig. 4(d)]. Only a few of the
plaquette matrix elements change when one of these local
moves is performed. The most complex is the twist move
[Fig. 4(c)] which involves ten matrix elements (only five
cubes are shown in order to make the figure clearer).

These different kinds of moves are required in order to
make the algorithm ergodic. As an illustration, we show in
Fig. 5 the energy per particle of free bosons as a function of
the inverse temperature S, with various types of moves sup-
pressed. We can see that the correct energy E(B) is obtained
only when both pull and baby pull moves are included.

|
71 J - ’

FIG. 3. (Color online) (a) Plaquettes with

K3/4}

K12 eeeseeeenees

K174}

same shading are independent. (b) Introducing a
dimension in imaginary time makes the
plaquettes become cubes, each representing an
infinitesimal evolution operator. Cubes with same
shading do not touch each other, while cubes with
different shading act at different times and there-
fore are decoupled.

(@ (b)
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FIG. 4. (Color online) To ensure ergodicity of the algorithm,
four kinds of moves must be included: (a) pull moves, (b) baby
pulls, (c) twist moves, and (d) baby twist moves.

It is notable in Fig. 5 that the correct energy is obtained
even without the twist moves. It might be thought that this is
because K=U=0 and that twist moves will become impor-
tant when turning on interactions, especially with ring ex-
change processes. However this is not the case, as can be
seen in Fig. 6. We believe this to be an advantage of the
four-site decomposition over the two-site one. The four-site
decomposition already analytically includes twists in the
evaluation of the matrix elements of the exponentials of the
H,.
While including only pull and baby pull moves seems to
get the energy right on the lattice sizes studied above, our
simulations are done with all moves included. These local
moves all take the form of local distortions of existing world
lines and hence cannot change p. Thus our code works in the
canonical ensemble. It simulates whatever value of p with
which we initialize the lattice. If desired, we can make con-
tact with the grandcanonical ensemble, by computing the
chemical potential as the energy cost, in the ground state, of
adding a boson to the system, w(N,)=E(N,+1)-E(N,). Ac-
tually, canonical simulations have certain advantages in ex-
ploring phase separation, as we shall see, and as has previ-
ously been described.”

4—¢ No baby pull 7
B8 Nopull
@@ No twist nor baby twist _

All moves
Analytical

Energy per particle

3+

B

FIG. 5. Energy per particle for free bosons as a function of the
inverse temperature 8 with and without including pull and baby
pull.
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Energy per site

(56 U=8 B=0.25 All moves
®—® U=8 =0.25 No twist
3] U=8 B=8 All moves

B8 U=8 B=§ No twist

FIG. 6. Energy per site at half filling for interacting bosons as a
function of the ring exchange strength K with and without including
twist moves.

Our simulations also are confined to the zero-winding sec-
tor of the space of all possible paths. This has implications
for how we measure the superfluid density p,. Consider the
well-known relation®”

WZ
b= ;d—t;Lz‘d, (14)

where L is the size of the L X -+ X L system, d the dimen-

sion, and (W2> the mean square of the winding number op-
erator which measures the net flow of particles off the right
side of the lattice and over to the left side. Our local moves
cannot change the winding, as is evident by comparing the
configurations of Fig. 7. Hence using Eq. (14) our algorithm

FIG. 7. Example of world line with W=1 (a) and W=0 (b)
winding numbers in the case of a one-dimensional lattice. Configu-
rations with nonzero winding number cannot be reached with local
moves.
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would systematically give a zero value for the superfluid
density, if we begin in a W=0 configuration.

However, we can still measure p,. The procedure is as
follows: We define the pseudo current operator [using the
notation of Fig. 2(b) for the site labels]

.;x(k) = E (ﬁcé + ﬁCS - ﬁcZ - ﬁc4) >
ce(kk+1)

W= 2 (gt —Ties = i), (15)
ce(kk+1)

where the sum .41 is over all cubes of Fig. 3(b) be-
tween times k and k+ 1. These quantities measure the number
of particles which jump in the positive x and y directions
between imaginary times k and k+1. The winding number
operators in both x and y directions are then given by

.1
W=;2]x(k)

1 M
W, =—2> j.(k), 16
g N)‘gjy() (16)

where N, and N, are, respectively, the number of sites in the
x and y directions. We measure also the autocorrelation func-
tion of the pseudocurrent:

Tk = 2 Gk +k)j k),
k!

Ty k) =2 Gyl +k)j (k")) (17)
k!

and compute its Fourier transform via
T 0,) =2 T, (ke (18)
k

where w,=2m/M)n.
One can show that these pseudocurrent operators are re-
lated to the winding by

0
(W2) = Tf
W2 (0)
(W) =——75— Y2 (19)

y
As already stated, the measurement of the winding number,
and hence the Fourier transform at w,=0, will give a zero
value. but we can avoid the problem by considering the finite
frequency response. In fact, one can show!> that the correct,
nonzero, winding numbg, and p, are given by taking the

zero-frequency limit of 7.(w,), as illustrated in Fig. 8.

RESULTS: HARD-CORE LIMIT, V=0

We can work in the hard-core limit by running a soft-core
code at large U, or more directly by forbidding the accep-
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FIG. 8. Restricting the winding number to a zero value intro-
duces a discontinuity in the Fourier transform of the pseudocurrent
autocorrelation function. Performing an extrapolation gives the cor-
rect value of the superfluid density.

tance of multiple occupancies in our Monte Carlo moves.
This also simplifies the computation of the matrix elements
in Eq. (13) since we can restrict to single occupancy states
(and hence diagonalize only a 16X 16 matrix). Such a hard-
core model is equivalent to replacing the standard Bosonic
commutation rules by the hard-core rules,

{ai,ai}=0, [ai,aj]=0 Vl?é],
{aj.al}=0, [a].al1=0 Vi#j,

{apal}=1, [ai,a;]=0 Vi#]j, (20)

where {A,B}=AB+BA is an anticommutator. The usual
Bosonic commutators between operators acting on different
sites ensure that the wave function is symmetric in the ex-
change of particles, as required for bosons.

Our simulations are done mainly on 16X 16 lattices. We
always take t=1 for the hopping parameter, which thereby
sets the energy scale. We will also set the near-neighbor in-
teraction V=0 until the final results section.

In order to describe the different phases of the system, in
addition to the superfluid density p,, we measure the Fourier
transforms of the density-density and plaquette-plaquette or-
der correlation functions, S(ar, ), P(,0), and P(0, ) de-
fined by

Slheky) = i (i, r)e ™, (1)
RS
P(k,k,) = I (NN)ZE (K,K Ne R ) - (22)

Figure 9 shows these quantities, and the superfluid den-
sity, as a function of K at half filling. Increasing K makes the
superfluid density decrease. p, vanishes completely around
K=8. At the same time, the plaquette structure factors
P(7,0) and P(0,7) start to grow, indicating the formation of
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FIG. 9. The superfluid density and the order parameters for the
hard-core case at half filling for a 16X 16 lattice. Increasing K
destroys the superfluid density. Then a solid order appears corre-
sponding to a VBS phase. This phase becomes unstable if increas-
ing K more, and yields to a CDW phase.

stripes by the ring exchange. This is the VBS (valence bond
solid) phase, previously discussed in quantum spin systems.’
Stripe formation is also observable by considering the corre-
lations in the hopping from plaquette to plaquette, rather than
the ring exchange. For higher values of K, the VBS phase
becomes unstable and is replaced by a CDW as shown by the
growth of S(7, ).

Both the VBS and CDW phases are gapped. That is, the
energy needed to add a particle to the lattice (the chemical
potential) jumps abruptly across p= % We define G=pu,
—u_ with p,=E[N,=(N/2)+1]-E(N/2) and p_=E(N/2)
—E(N/2-1). G=0 in the superfluid phase K <8, and is non-
zero for K>8. The VBS and CDW phases are insulators.

70 T T

60 /Q

50 /

/]

Gap
R}

30 I / -
20 b // 1
10 / b

t0—o—0—0—0—9 09 ‘ :

¢} 5 10 15
Knt

FIG. 10. The gap in the chemical potential at half filling, as a
function of K for a 16X 16 lattice. The gap starts to appear at K
=8, coincident with the vanishing of p;, and grows as K is in-
creased, showing the presence of insulating phases.
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Energy per site

p

FIG. 11. The energy per site as a function of the density p, for
K=10 on a 8§ X8 lattice.

Figure 10 shows G as one increases K out of the superfluid
phase at half-filling.

We now consider what happens when the system is away
from half filling. Figure 11 shows the energy as a function of
density. There are several interesting features. First, the kink
in the energy right at half filling is associated with a nonzero
gap. Second, there is a region of densities for which the
energy is concave down. As a consequence, the usual Max-
well construction indicates that it is energetically more favor-
able to have two separate regions of different density than a
single region of uniform density. The system phase separates.

The energetic signature of phase separation is further il-
lustrated in Fig. 12, which shows the density of particles p as
a function of the chemical potential u over a wide range of
densities. The jump of the chemical potential at half filling is
the gap associated with the solid VBS phase discussed
above. The regions where the slope of the curve (propor-

1 T T T

0.8

FIG. 12. The density of particles as a function of the chemical
potential, for K=10 (8 X 8 lattice).
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FIG. 13. (Color online) Typical QMC results for the average density distribution when the clustering occurs (K=10, hard core). For a
density p=12/256 the system adopts a shape of an island, while for p=48/256 the system prefers to form a stripe, which, in the presence
of periodic boundary conditions, is the geometry which maximizes the number of occupied four-site plaquettes for which the ring exchange

energy is low.

tional to the compressibility ;) is negative indicate that the
system is thermodynamically unstable®® and undergoes phase
separation. There are two such regions. The first is seen as
soon as we go away from half filling, i.e., for the two fillings
N/2+1 immediately adjacent to half filling, and indicates a
first-order transition from the VBS phase to a superfluid (see
also Fig. 14). The same negative compressibility near half
filling is obtained for values of K higher than 15, showing a
first-order transition from the CDW phase to a superfluid.
The second region of negative compressibility occurs below
p.=0.34.

The spikes occuring at p=~0.1 and p~0.2 in Fig. 12 are
not due to statistical fluctuations. Indeed, when phase sepa-
rating, the system can form a stripe in its density profile
rather than an island, due to periodic boundary conditions.
This produces a shift in the energy, and hence in the chemi-
cal potential. In our simulations, the system forms a stripe
for pe[0.1,0.2], and an island when crossing the limits,
generating the spikes.

While analysis of the energy and chemical potential yield
quantitative information about the regions of stability, a more
straightforward, qualitative, indication of clustering comes
from simple real-space images of the boson density during
the course of a simulation. Whether clustering occurs or not,
if the density is averaged over the whole simulation, we
should observe a uniform density distribution, since the
probability of a state is independant of any translation in the
lattice. But if the density is averaged over only a few itera-
tions, we observe a density profile reflecting the clustering
(Fig. 13).

To corroborate further that this negative compressibility is
associated with phase separation, we define the observable ()
to be the average of the density structure factor over the
smallest values of the wave vector:

S(€,,0) + (e €) + S(0,€,) 27

=— (23
3 €y N (23)

Q

() measures modulations of the density profile with wave-
lengths on the order of the size of the lattice. Figure 14

shows the superfluid density and ) as functions of the den-
sity of particles p, for a fixed value K=10. The symmetry of
the curves reflects the particle-hole symmetry of the hard-
core Hamiltonian. Starting from p=% where () and p, have a
zero value, and which corresponds to the VBS phase, we see
that doping the system increases the superfluid density rap-
idly. p, reaches its maximum for p=0.4 (or p=0.6 by sym-
metry). Then p, falls at the same time that {} grows and
reaches its maximum for p=0.2 (or p=0.8). Figure 14 sug-
gests that as soon as we go away from half filling, there is a
transition from the VBS phase first to a stable superfluid, but
that subsequently phase separation sets in. The density p
=0.3 where p, falls and () increases rapidly matches quite
well with the density at which « changes sign in Fig. 12.
The occurrence of phase separation indicated in the com-
pressibility ) and in real-space images, may be understood
with a simple physical picture. When K is sufficiently large,
the system increases the ring exchange processes in order to

0.25 T T T T

—0 O=10x[S(¢,,0)+S(e,2 )+S(0,e )]
—ap

0.2

0.15

0.1

0.05

p

FIG. 14. Superfluid density and () as functions of the density of
particles, for K=10 on an 8 X 8 lattice.
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FIG. 15. (Color online) The phase diagram of hard-core bosons
(16X 16 lattice). The solid phases (VBS and CDW) exist only at
half filling. When doping the system, the phase first becomes su-
perfluid, then the clustering occurs closer to pzé as K is increased.

decrease its energy. But ring exchange is possible only if
there are second-neighbor particles. Thus in a dilute collec-
tion of particles, the ring exchange term has a tendency to act
as an attractive potential. This is not true of the usual kinetic
energy, since there a single boson can hop by itself without
needing a partner.

One can analyze this binding quantitatively for the case of
two bosons by exact diagonalization (Lanczos). Figure 1 of
Ref. 9 shows the mean quadratic distance () between two
particles for different L X L lattice sizes in the ground state.
The soft-core case is considered with an on-site repulsion
U=12t. For low values of K the distance between the bosons
grows linearly with L, as one would expect if the particles
were distributed independently across the lattice. On the
other hand, for high values of K, the distance between the
particles is relatively independent of lattice size, suggesting
the particles stay together, and demonstrating the existence
of a bound state. While the data are for U=12¢, the phenom-
enon is independent of U, and, in particular, is seen also in
the hard-core case. The reason the on-site repulsion U does
not successfully compete with the binding is that the bound
wave function favors the bosons on second-near-neighbor
sites where U plays no role. This is reflected in the data in
Ref. 9 where it is shown that the distance between the paired
bosons is still several lattice sites.

Figures 12 and 14 showed our results for hard-core
bosons at fixed K=10 as the system is doped. By performing
further simulations for different values of K, we are able to
generate the complete phase diagram of hard-core bosons
(Fig. 15) in the K—p plane. Gapped VBS and CDW phases
exist only at half filling and relatively large K. For weaker K
and half filling the system is superfluid. When the system is
doped a small amount away from half filling, only a super-
fluid phase is present. Upon further doping, the clustering
region is reached. As K becomes large, clustering occurs
closer and closer to half filling.

Melko et al.® have studied the spin-1/2 Hamiltonian,

H=-J2 B-K> Py-h> &, (24)
(ij) (ijkl) i

where
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FIG. 16. Q vs K for U=4¢ and U=8¢ and two different lattice
sizes. The lattice is half filled. We can see that () increases sharply
at K=U/2.

Pijui=S7S;SiS; +S;SISST (25)

and §*,87,8%,8%,8™ are the usual spin operators. This is the
Heisenberg XY model with a four-spin exchange term and in
a magnetic field. This model is exactly equivalent to our
Bosonic model in the hard-core limit. The magnetic field
plays the role of the chemical potential in the grand canoni-
cal ensemble. In the phase diagram obtained by Melko et al.,
the superfluid, VBS, and CDW phases are present and their
boundaries match with our results. In addition the nature of
the transitions also agree. Our simulations in the canonical
ensemble exhibit clear phase separation indicating first-order
transitions from CDW insulator (Néel) to SF and also from
SF to Mott (fully polarized, in the spin language). To see
this, consider the phase diagram, Fig. 1 in Ref. 8. As dis-
cussed in that paper, the cuts along lines A and B show clear
hysteresis indicating first-order transitions. Our simulations
in Fig. 12 are done at constant K and would correspond most

o U

.5
U=4K=1.5

T
d
0

uperfluid
2

K/t

FIG. 17. The phase diagram of soft-core bosons (16X 16 lat-
tice). The phase is superfluid under the curve, while the system
forms a cluster in the upper part. The curve is approximately
hyperbolic.
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closely to a vertical cut, like A, in Ref. 8 but going from Néel
to SF to fully polarized. This way two first-order phase tran-
sitions would be crossed, as shown in Fig. 12 here by the
negative compressibility regions. Note also that the jump in
the density when going from Néel to SF (e.g., cut B in Ref.
8) is very small as shown in the magnetization histogram,
Fig. 3 of Ref. 8. Recalling that p=m+0.5, we see that the
jump in p in the histogram is about 0.015, of the same order
as we see in our Fig. 12.

Thus the hard-core Bosonic model with ring exchange
does not exhibit any compressible but nonsuperfluid, Bose-
liquid, phase. In the next section we examine the possibility?
that the relaxation of the hard-core constraint could make the
solid phases (VBS or CDW) evolve to a Bose liquid.

RESULTS: SOFT-CORE CASE, V=0

We now turn to the soft-core case, but still choose the
intersite repulsion V=0 and half filling. The superfluid den-
sity p, is shown as a function of K for U=38t in Fig. 4 of Ref.
9. p, first grows slightly when K increases. When K=4t, p,
starts to decrease. This decrease becomes rather rapid until,
at K=28t,p, levels off at about half its K=0 value. This be-
havior is quite different from the hard-core case where p,
decreases as soon as the ring exchange interaction is turned
on, and vanishes at K =8t.

In order to understand the difference in the behavior of p;
between the soft- and hard-core cases, we begin by examin-
ing ), the small momentum density-density structure factor.
Figure 16 shows () as a function of K for U=4t and U=38t.
In both cases, when K reaches a value of the order U/2,()
grows sharply, showing, as in the hard-core case, the pres-
ence of a clustering tendency. Results for 16 X 16 and 24
X 24 lattices are almost identical, indicating that the phase
separation is not a finite-size effect.

The behavior of the superfluid density can then be ex-
plained as follows: When K is weak, the ring exchange term
supports the motion of the particles, and helps the kinetic
term in delocalizing them. A flow can thus occur more easily
and p, increases. When K is large, clustering occurs and
long-range flow across the lattice is somewhat inhibited. If,
for example, the system forms a stripe, one might argue that
roughly speaking the flow of particles is possible only in one
direction, and p, should decrease by a factor of 2.

As we have seen, at half filling, in the hard-core case,
superflow does not occur when K is large because of the
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FIG. 18. (Color online) Den-
sity profiles for the soft-core case
with U=4 and K=8 for commen-
surate fillings, p=1 (left) and p
=2 (right).

formation of gapped VBS and checkerboard phases. For the
soft-core case, no solid structure is established and the par-
ticles can circulate. Thus the soft-core model is always su-
perfluid at half filling and undergoes a clustering when K
reaches a value of the order U/2. Figure 17 shows the phase
diagram of soft-core bosons at half filling.

Our phase diagram, Fig. 17, is for half filling, but the
main feature, a tendency to phase separation, is the same at
other densities. As an extreme example, simulations done for
a commensurate filling of one particle per site show that, like
the superfluid phase, the Mott phase also collapses when the
ring exchange processes are too strong, and is replaced by
clustering (Fig. 18).

RESULTS: SOFT-CORE CASE, V#0

In the preceding two sections we have seen that a Bose-
liquid does not occur in either the hard- or soft-core Bose
Hubbard models when ring exchange is included, in contrast
to recent suggestions.” It is natural to consider whether
longer range repulsion might prevent the system from col-
lapsing. As a first step, we now include a repulsion between
first nearest neighbors. Figure 19 shows the structure factor
S(7,m) and Q for U=5¢ and different values of V, as a

———e Q U=5V=3

e——e S(m,m) U=5 V=3

0.2 =——a Q U=5V=3.5 )
== S(m,m) U=5V=3.5
«——<QU=5V=4
+«— S(n,m) U=5 V=4
—— Q U=5V=5
— S(n,m) U=5 V=5

0.1 1

Kt

FIG. 19. (Color online) The CDW structure factor S(7r, ) and
Q) for U=5¢ and different values of the potential V between first
nearest neighbors, at half filling (16X 16 lattice). V is seen to com-
pete with phase separation, pushing the onset of the rise in {) out to
larger and larger K.

054524-9



ROUSSEAU, SCALETTAR, AND BATROUNI

PHYSICAL REVIEW B 72, 054524 (2005)

FIG. 20. (Color online) Density profiles at half filling for U=5¢,V=>5¢, and different values of K: (a) K=, CDW phase; (b) K=51,

uniform density; and (c) K=7t, phase separation.

function of K at half filling. Three different behaviors of the
density correlations are observable: a CDW [density order at
momentum (7,7)] when K is weak (well known in the
model without ring exchange processes),”! at intermediate K
a uniform phase where the density structure factor is small at
all wavelengths, and a regime of phase separation ({) large)
when K is big. As expected, V does suppress the tendency for
clustering. K must be made larger for phase separation to
occur when V is increased. The phases of Fig. 19 are also
directly visible in real space snapshots of the densities in the
course of the simulations (Fig. 20).

Despite the absence of density order, the uniform phase
[Fig. 20(b)] is not a Bose liquid. Figure 21 shows that the
superfluid density is zero only for the CDW phase. As soon
as the staggered density order is destroyed with increasing K,
the superfluid density becomes nonzero. p, climbs rapidly
and is roughly constant through the region where both
S(ar, ) and Q are small. It remains nonzero in the cluster
phase, though it does drop by a factor of 2 when clumping
begins. There is no Bose liquid phase in the model. (Of
course, if the density is sufficiently small, then an island
phase in which the boson cloud does not span the system will
have vanishing p,. This situation also occurs for bosons in a

0.5 ' T ' i . T : '

10

Kit

FIG. 21. (Color online) The superfluid density p;, the structure
factor S(r, ), and ) as functions of K for U=5¢ and V=5t (16
X 16 lattice). The superfluid density vanishes only when the system
is in the CDW phase.

confining potential, where the phase is nevertheless com-
monly referred to as being superfluid.

CONCLUSIONS

In this paper we have studied the effect of a ring exchange
term in the hard- and soft-core Bose Hubbard model, also
including a near-neighbor repulsion, using quantum Monte
Carlo simulations in the canonical ensemble. It had been
suggested that this term might lead to a normal Bose liquid
phase, that is, one which is compressible but nonsuperfluid.
For the hard-core case, we reproduced results obtained by
Melko et al.® in the grand canonical ensemble. However,
working in the canonical ensemble enables us to capture and
characterize an interesting cluster phase of the model. No
Bose liquid phase was observed. Thus the speculation of
Paramekanti et al.,? that the relaxation of the hard-core con-
straint might give rise to a Bose liquid does not appear to be
borne out. The tendency to clustering can be understood by
analyzing the effect of K on a two-bosons system. We have
shown numerically that K acts much like an attractive poten-
tial, and that when it is sufficiently large, the two bosons
form a bound state. This attraction leads to clustering in sys-
tems with larger boson numbers.

We saw that, while a near-neighbor repulsion competes
with this clustering, it could not create a normal Bose liquid.
At weak K it promotes an alternate charge-density-wave in-
sulator. At strong K, while V does help prevent clustering, p,
remains nonzero. It might be interesting to study models
with longer range interactions which will act together to pre-
vent phase separation, but compete with each other by pro-
moting phases at different ordering momenta. Such models
might, finally, realize the Bose liquid phase.

To conclude, let us comment on the implications of our
work for the phase diagram of the spin-1/2 quantum Heisen-
berg model with a ring exchange term. The kinetic energy
term in the hard-core boson Hubbard model maps onto
JZ(S;S;+5}S]) with exchange constant J=27. At the value
U=4t in our soft-core model, double occupancy is already
very rare at half filling, and hence we are almost in the hard-
core limit. The value of the ring exchange energy scale re-
quired to drive phase separation for this U is K=2¢, or in
other words, K= J. To reproduce the near-neighbor coupling
of the z components of spin in the Heisenberg model we
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must include a near-neighbor repulsion in the Bose-Hubbard
model, a term which clearly would suppress phase separa-
tion. Thus we expect ring exchange to have the potential to
drive phase separation in the Heisenberg model only for K
considerably greater than J.

PHYSICAL REVIEW B 72, 054524 (2005)
ACKNOWLEDGMENTS

We acknowledge support from the National Science
Foundation under Award Nos. NSF DMR 0312261 and NSF
INT 0124863, and useful input from R. Stones.

I'D. J. Thouless, Proc. Phys. Soc. London 86, 893 (1965).

2 A. Paramekanti, L. Balents, and M. P. A. Fisher, Phys. Rev. B 66,
054526 (2002).

3S. Doniach and D. Das, Braz. J. Phys. 33, 740 (2003).

4R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T.
E. Mason, S. W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86, 5377
(2001).

SA. A. Katanin and A. P. Kampf, Phys. Rev. B 66, 100403(R)
(2002).

OE. Muller-Hartmann and A. Reischl, Eur. Phys. J. B 28, 173
(2002).

7A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys.
Rev. Lett. 89, 247201 (2002).

8R. G. Melko, A. W. Sandvik, and D. J. Scalapino, Phys. Rev. B
69, 100408(R) (2004).

9V. Rousseau, G. G. Batrouni, and R. T. Scalettar, Phys. Rev. Lett.
93, 110404 (2004).

10G. Roux, S. R. White, D. Poilblanc, S. Capponi, and A. Laeuchli,
cond-mat/0504027, Phys. Rev. B (to be published).

I'Kwon Park and Subir Sachdev, Phys. Rev. B 65, 220405(R)
(2002).

127 Sandvik,
21550

3H. P. Buchler, M. Hermele, S. D. Huber, M. P. A. Fisher, and P.
Zoller, cond-mat/0503254.

14M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B 40, 546 (1989).

15G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev.
Lett. 65, 1765 (1990).

I6T. D. Kuhner, S. R. White, and H. Monien, Phys. Rev. B 61,

http://meetings.aps.org/Meeting/ MAROS/Event/

12474 (2000).

17J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).

I18W. Krauth and N. Trivedi, Europhys. Lett. 14, 627 (1991).

19A. van Otterlo and K.-H. Wagenblast, Phys. Rev. Lett. 72, 3598
(1994).

20For studies of a closely related current model, see A. Kuklov, N.
Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 93, 230402
(2004), and references cited therein.

2P, Niyaz, R. T. Scalettar, C. Y. Fong, and G. G. Batrouni, Phys.
Rev. B 44, 7143 (1991); 50, 362 (1994).

22K. S. Liu and M. E. Fisher, J. Low Temp. Phys. 10, 655 (1973);
H. Matsuda and T. Tsuneto, Suppl. Prog. Theor. Phys. 46, 411
(1970); G. Chester, Phys. Rev. A 2, 256 (1970); E. Roddick and
D. Stroud, Phys. Rev. B 48, 16600 (1993); and A. van Otterlo
and K. H. Wagenblast, Phys. Rev. Lett. 72, 3598 (1994).

23G. G. Batrouni, R. T. Scalettar, G. T. Zimanyi, and A. P. Kampf,
Phys. Rev. Lett. 74, 2527 (1995); G. G. Batrouni and R. T.
Scalettar, ibid. 84, 1599 (2000);

24E. Loh, D. J. Scalapino, and P. M. Grant, Phys. Rev. B 31, 4712
(1985).

23 See, for example, Ref. 15 where only two site decouplings were
used.

26 A. W. Sandvik and J. Kurkijarvi, Phys. Rev. B 43, 5950 (1991).

27R. M. Fye, Phys. Rev. B 33, 6271 (1986).

28R. M. Fye and R. T. Scalettar, Phys. Rev. B 36, 3833 (1987).

291f one were interested in cases where the density were larger, and
the on-site U were small, this might no longer be a good ap-
proximation.

30E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987).

054524-11



