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Signatures of spin and charge energy scales in the local moment and specific heat
of the half-filled two-dimensional Hubbard model

Thereza Paiva* and R. T. Scalettar
Physics Department, University of California, Davis, California 95616

Carey Huscroft
Physics Department, University of Cincinnati, Cincinnati, Ohio 45221–0011

A. K. McMahan
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550

~Received 2 August 2000; published 13 March 2001!

Local moment formation driven by the on-site repulsionU is one of the most fundamental features in the
Hubbard model. At the simplest level, the temperature dependence of the local moment is expected to have a
single structure atT;U, reflecting the suppression of the double occupancy. In this paper we show low-
temperature quantum Monte Carlo data for half-filling which emphasize that the local moment also has a
signature at a lower energy scale which previously had been thought to characterize only the temperatures
below which moments ondifferentsites begin to correlate locally. We discuss implications of these results for
the structure of the specific heat, and connections to quasiparticle resonance and pseudogap formation in the
density of states.
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I. INTRODUCTION

The finite temperature properties of the two-dimensio
Hubbard model have been extensively studied both ana
cally and numerically.1 Quantum Monte Carlo~QMC! is es-
pecially effective at half-filling, where there is no sign pro
lem. From calculations of the magnetic structure fact
susceptibility, compressibility, density of states, and the e
tron self-energy, a clear picture has emerged concerning
nature of the short and long range magnetic order, the M
gap, and the quasiparticle dispersion. As we shall disc
the properties of the two-dimensional half-filled Hubba
Model are in several ways rather peculiar, for example,
existence of long range order in the ground state at b
weak and strong coupling.

While the specific heatC(T) has been computed by
number of groups in one dimension, principally by Bet
ansatz techniques,2 there have been few QMC studies
C(T) for the two- and three-dimensional Hubba
models.3–6 The behavior for largeU is well understood and
one expects, as in the one-dimensional case, a two p
structure inC(T), with a broad high-temperature peak atT
;U associated with ‘‘charge fluctuations,’’ and a narrow
peak at lower temperatures associated with ‘‘spin fluct
tions.’’

This two peak structure of the Hubbard model can
understood from a strong coupling viewpoint as follows:
temperatures which exceed the on-site repulsionT.U, the
up and down electrons are decoupled,^n↑n↓&5^n↑&^n↓&
5 1

4 , at half-filling, and the local moment ^mz
2&

5^(n↑2n↓)2&5^n↑1n↓22n↑n↓&5122^n↑n↓&50.5, its
uncorrelated value. At the temperature scaleT;U, double
occupancy begins to be suppressed,^n↑n↓&→0, andmz

2→1.
Since the potential energy in the Hubbard model is jusP
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5Un↑n↓5(U/2)(12mz
2), this growth in the local moment is

synonymous with a decrease in the potential energy aT
decreases, and hence a peak inC(T) at T;U. Once mo-
ments are formed, the half-filled Hubbard model maps o
the spin-1/2 antiferromagnetic Heisenberg model, with
change constantJ54t2/U, whose specific heat has a peak
T;J associated with magnetic ordering. In sum, one expe
C(T) for the strong coupling Hubbard model at half filling t
have a ‘‘charge peak’’ atT;U and a ‘‘spin peak’’ atT;J.
This strong coupling argument further suggests that the t
perature derivatives of the potential and kinetic energies
associated with the high- and low-temperature specific h
peaks, respectively.

On the other hand, the behavior of the specific heat
small U in the two-dimensional Hubbard model is still un
clear. In particular, it is not known whether a two peak stru
ture is present for all values of the interaction or if the
coalesce into a single peak at smallU. That the two peaks
might merge is suggested by the fact that the charge and
energy scalesU and t2/U approach each other asU is de-
creased. However, the situation is not so straightforward,
cause the strong coupling form for the energy scale for s
ordering crosses over to a weak coupling expressio7,8

t exp(22pAt/U), which at smallU is still well separated
from the energy scalest andU.

The QMC results reported in this work are consistent w
such weak coupling behavior at smallU. That is, one of our
key findings is thatC(T) shows two distinct peaks which
persist to couplings an order of magnitude less than the n
interacting bandwidth. It may be that the half-filled two
dimensional Hubbard model is unique in this respect, sin
as we review below, studies in one dimension and wit
‘‘dynamical mean field theory’’~DMFT! show a merging of
the peaks at values ofU roughly equal to the bandwidth
©2001 The American Physical Society16-1
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Indeed, the two-dimensional half-filled Hubbard model on
square lattice has unusual nesting features in its noninte
ing band structure, as well as a logarithmic divergence o
density of states at the Fermi level which have previou
been noted to enhance antiferromagnetism anomalously7

Whether this is the case or not, there is as yet no com
ling evidence of the appearence of a weak coupling ene
scale t exp(22pt/U) in the specific heat in other dimen
sions. In one dimension, exact diagonalization in sm
chains9 and QMC calculations10 suggest the two peak
merge, but disagree with respect to the interaction streng
which this occurs. Exact diagonalization is limited to cha
of very modest extent, and finite size effects tend to be la
for small U. Meanwhile, QMC work did not reach low
enough temperatures to resolve the two peaks even for l
values ofU where they almost certainly both exist. Beth
Ansatz calculations help clarify this issue, but focus on
largeU limit.11–13Despite these various caveats, the cons
sus of these approaches is that the spin and charge p
merge atU/t'4, the one-dimensional bandwidth. Quantu
transfer matrix calculations14 also show the merging of th
two peaks atU/t'4.

Coalescence of the specific heat peaks has also been
in DMFT which studies the system in the limit of hig
dimension.15–17 There, the Hubbard model is studied with
Gaussian density of states of unit variance, and the spin
charge peaks are found to merge atU'1.5. The fact that the
bandwidth is undefined complicates comparisons with res
in finite dimension, but one can still examine the ratio ofU
to the kinetic energy per particle, which is finite for a Gau
ian density of states. The valueU/t'4 in two dimensions
has the same ratio ofU to kinetic energy as the interactio
strength at which the two peak structure is lost in DMF
However, an additional difficulty in the interpretation of th
DMFT results, in addition to the use of a Gaussian density
states, is the restriction of the calculations to the param
netic phase, and therefore the neglect of antiferromagn
fluctuations. More precisely, the low energy feature in
specific heat observed in DMFT is not associated with m
netism, as is the case in one and two dimensions.

It is the purpose of this paper to present a detailed st
of the temperature dependence of the local moment and
associated features in the specific heat for the half-filled t
dimensional Hubbard Hamiltonian. A focus of our work w
be on extending the strong coupling picture of the two pe
structure ofC(T) to intermediate and weak coupling. As w
shall show, the connection of moment formation and m
ment ordering with the high- and low-temperature peaks,
spectively, in the specific heat is modified. At the same tim
we will describe two recently developed techniques for co
puting the specific heat which hold certain advantages o
approaches previously used. These new techniques als
low us to compute the entropy and free energy, quanti
typically not so easy to obtain with Monte Carlo. A fascina
ing conclusion of the DMFT studies15–17 concerned the ex
istence of a universal crossing point of the specific h
curves for differentU. We shall show such a crossing occu
also in two dimensions. Finally, we will discuss results f
dynamical quantities such as the density of states and op
12511
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conductivity and comment on their consistency with the
cal moment and specific heat.

II. MODEL AND METHODS

A. The Hubbard Hamiltonian

The two-dimensional Hubbard Hamiltonian is

H52t (
^ i,j &s

~cis
† cjs1cjs

† cis!

1U(
i

S ni↑2
1

2D S ni↓2
1

2D2m(
i

~ni↑1ni↓!. ~1!

Here cis
† (cis) are creation~destruction! operators for a fer-

mion of spin s on lattice sitei. The kinetic energy term
includes a sum over near neighbors^ i,j & on a two-
dimensional square lattice, and the interaction term is writ
in particle-hole symmetric form so thatm50 corresponds to
half-filling ^ni↑1ni↓&51 for all Hamiltonian parameterst,U
and temperaturesT. We will henceforth set the hopping pa
rametert51.

Equal time quantities of interest in this paper include t
energyE5^H&, the specific heatC5dE/dT, the local mo-
ment ^mz

2&5^(ni↑2ni↓)2&,18 and the near neighbor spin
spin correlation function̂ SiSi1 x̂&. To probe longer range
magnetic order, we evaluate the structure factor

S~Q!5
1

L2 (
i,j

eiQ•( i2 j )^~ni↑2ni↓!~nj↑2nj↓!&; ~2!

whereQ5(p,p) is the antiferromagnetic wave vector.
We also evaluate two dynamic quantities. The density

statesN(v) is given implicitly from QMC data for the
imaginary time Green’s function

G~t!5
1

N (
p

^c~p,t!c†~p,0!&5E
2`

1`

dv
e2vtN~v!

e2bv11
.

~3!

Likewise, the optical conductivity,sxx(v), is related to
QMC data for the imaginary time current-current correlati
function

sxx~t!5^ j x~t! j x~0!&5E
2`

1`

dv
e2vtsxx~v!

e2bv21
,

j x~t!52 i t(
is

~ci1 x̂,s
†

cis2cis
† ci1 x̂,s!. ~4!

Both N(v) and sxx(v) are computed using the Maximum
Entropy ~ME! technique to invert the integral relations. W
obtain our default models using the annealing method,
described in Ref. 19.

B. Determinant quantum Monte Carlo

We use determinant QMC~Ref. 20! to evaluate the ex-
pectation values above. This approach treats the elect
electron correlations exactly, and at half-filling, where w
6-2
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SIGNATURES OF SPIN AND CHARGE ENERGY SCALES . . . PHYSICAL REVIEW B 63 125116
focus this work, is able to produce results with very sm
statistical fluctuations at temperatures low enough that
ground state has been reached. The technique is limite
finite size lattices, and we will show appropriate scali
analyses to argue that we extract the thermodynamic lim

C. Calculation of specific heat

We will evaluate the specific heat in three ways.21 All
begin by using QMC to obtainEn5E(Tn) and the associate
error barsdEn at a sufficiently fine grid ofNT discrete tem-
peraturesTn . We used values ofDt small enough so that th
associated systematic errors were negligible and have n
fect on the results. For low and intermediate temperature
imaginary time discretization of the QMC isDt51/8. For
the strong coupling regime other values ofDt were also
tested (Dt51/12 and 1/16). In the high temperature regi
Dt is not kept constant, instead it is decreased~usually by a
factor of 1/2! as T is increased. This is necessary sinceDt
51/(LT) andL must be greater than or equal to one. Thus
T is increasedDt must become small. These smallDt only
reduces systematic errors yet further.

The first approach is straightforward numerical differe
tiation of the energyE(Tn). The second utilizes a fit to th
numerical data for the energyE(Tn), and the third is an
approach using the ME method to invert the dataE(Tn) to
obtain a spectrum of excitations of the system. These
two approaches were introduced relatively recently.22,23

Therefore we shall describe them in some detail.
In our fitting method, whose results we denote byEe(T),

we match the QMC dataEn to the functional form22

Ee~T!5E~0!1(
l 51

M

cle
2b lD, ~5!

by adjusting the parametersD andcl to minimize24

x25
1

NT
(
n51

NT @Ee~Tn!2En!] 2

~dEn!2 . ~6!

The number of parametersM is chosen to be about one
fourth of the number of data points to be fit. Smaller nu
bers do not allow a good fit, while larger ones overfit t
data. We find that a range of intermediateM exists which
gives stable and consistent results.

Calculation ofC(T) by fitting E(T) to polynomials has
also been used recently,3 but requires at least two separa
functions to be used at high and low temperatures. An
vantage of Eq.~5! is that it uses a single functional form ove
the entire T range, and has the correct low- and hig
temperature limitsC(T)→0.

The specific heat can also be evaluated by differentia
an expression which relates the energy to the density
states of Fermi and Bose excitations in the system23

Eme~T!52E
2`

1`

dv v@F~b,v!rF~v!1B~b,v!rB~v!#,
12511
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F~b,v!5
1

11ebv
B~b,v!5

1

12ebv
, ~7!

and differentiating to get the specific heat

Cme~T!5
]Eme~T!

]T

52E
2`

1`

dvvF]F~b,v!

]T
rF~v!1

]B~b,v!

]T
rB~v!G .

~8!

The integral equation forEme(T) is inverted by using the ME
method to obtainrF(v) andrB(v) from the QMC data for
En . We denote byEme(T) the energy obtained from th
resultingrF(v) andrB(v).

This ME approach differs in philosophy from the fittin
approach which begins with a physically reasonable fu
tional formEe(T) and then minimizes the deviationx2 from
the numerical data. Instead, ME computes the most prob
spectrumr(v) given the energy dataE(Tn) and kernals
F(b,v) and B(b,v), without presupposing a particula
functional form. Despite this difference, we will show th
the results of the two techniques are very similar, and ag
quite well with numerical differentiation.

D. The entropy and free energy

Both the ME and fitting techniques allow the speci
heat, entropy, and free energy to be computed by the s
dard formulas

C~T!5
dE~T!

dT
,

S~T!5E
0

TC~T8!

T8
dT8,

F~T!5E~T!2TS~T!. ~9!

HereE(T)5Ee(T) or Eme(T).
In the case of the fitting technique, we can evaluate

sum rule

1

NE0

`

dT
C~T!

T
5(

l 51

M
cl

lD
52 ln 22S0 , ~10!

which ties the high-temperature entropy to the logarithm
the dimension of the Hilbert space. TheT50 entropyS0
must of course vanish in the thermodynamic limit.25 For the
2D Hubbard model atUÞ0 we find the termS0 vanishes
even on finite lattices, but it may be present in other Ham
tonians. In the present work, the sum rule of Eq.~10! is
satisfied to a few percent. For the maximum entropy meth
a similar check is possible by integratingrF . We now turn
to the results of our simulations.
6-3
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III. EQUAL TIME CORRELATIONS—LOCAL MOMENT,
SPECIFIC HEAT, AND MAGNETIC ORDER

A. The local moment

In the Introduction we reviewed the standard argument
the expected behavior of the Hubbard model local mom
Early determinant QMC work for the two-dimensional Hu
bard model7 confirmed this, as did subseque
investigations.26 In Fig. 1 we show that an examination o
mz

2 with a fine temperature mesh and at low temperatu
reveals that after reaching a plateau at intermediate temp
tures,mz

2 changes value again at a second, low-temperat
scale.27 We will come back to this point in more detail late
but it is worth commenting immediately that while the low
temperature structure inmz

2 is small compared to the size o
the growth at high temperature, it occurs over a mu
smaller temperature range, and hence contributes a l
peak in the specific heat.

In order to determine whether this is a finite size effect,
Fig. 2 we show data on a range of lattice sizes from 434 to
10310. The evidence for the existence of the low-ene
scale is robust as the lattice size is increased. We can
make an extrapolation to the thermodynamic limit assum
a correction which goes as the inverse of the linear sys
size, as spin-wave theory indicates is appropriate for the
structure factor.28

Additional insight is obtained by looking at the behavi
of mz

2 at different values ofU, as in Fig. 3. The data of Fig
3 are replotted in Fig. 4 to emphasize the universal natur
the high temperature behavior and the fact that the in
increase in the local moment as temperature is decre
does indeed occur at a temperature scale set byU.

In the zero-hopping (t50) limit, ^mz
2&51/$exp@2U/

(2T)#11%, which is monotonic withT, dropping from 1 at
T50 to 1/2 atT→`. Why is the maximum in̂ mz

2& shifted
from T50 when a small hopping is turned on at strong co

FIG. 1. The temperature dependence of the local momen
shown at fixedU54 for a 636 lattice. In addition to rising atT
;U, asT decreases,mz

2 exhibits a second structure at lower tem
perature. The error bars shown are smaller than the size of
points.
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pling? The ground state is antiferromagnetic, with the eff
tive exchangeJ arising from virtual hopping of the electrons
This virtual transfer reduces the degree of localization as
be seen from the values of^mz

2& at T50 in Fig. 3. In the
low-lying excited states the deviations from the antiferr
magnetic state reduce the virtual hoppings since the P
principle forbids hopping when adjacent electron spins
ferromagnetically aligned. Localization is thereby increas
with increasing temperature, giving rise to the maximum
TÞ0. This maximum at largeU has also been observed
one dimension.9

At weak coupling, we see the opposite effect. The lo
moment has instead an additional increase at low temp
ture. This has a natural explanation in terms of the format

is

he

FIG. 2. Data for the local moment for different lattice sizes. T
low temperature feature inmz

2 remains present as the lattice size
increased.

FIG. 3. Temperature dependence of the local moment for dif
ent values of the on-site repulsionU on 636 lattices. The dashed
line corresponds to the zero-hopping limit, forU512. The position
of the low-temperature feature first increases in temperature aU
increases, but then gradually falls, as emphasized later in Fig.
The error bars are smaller than the size of the points and are
shown.
6-4
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of local magnetic order. If there is an energy gain with o
dering, there will be an associated preference for large
ments. It is interesting to note that the DMFT results15 do not
observe this additional moment enhancement at weak
pling. Instead, the local moment always has a maximum
function of temperature. This is, perhaps, a consequenc
restricting the DMFT to the paramagnetic phase.

B. The energy and specific heat

Figure 5 shows the QMC results forE(Tn) together with
the exponential fitEe(T). Calculation of the specific hea
brings out the low-temperature features inE(T). We begin
our analysis of this data for the specific heat by looking
the data at relatively strong coupling (U510) as shown in
Fig. 6. It is seen that the results for the Hubbard model

FIG. 4. Scaled version of the data of Fig. 3. The plot shows t
for high T the local momentmz

25
1
2 1U/(8T), that is, the deviation

of the local moment from its noninteracting value1
2 exhibits a uni-

versal behavior with a temperature scaleU.

FIG. 5. QMC values~circles! for the energy, and fittings pro
vided by Eq. 5. HereU54 and the lattice is 636. The different
lines ~dotted, dashed, dot-dashed! show that the fit is stable over
range of values of the number of fitting parameters.
12511
-
o-

u-
a
of

t

e

beautifully fit by combining the zero-hoppingt50 specific
heat, which lies right on the highT Hubbard model results
and the Heisenberg specific heat,33 which similarly lies right
on the lowT Hubbard model results. The areas under b
the low and highT peaks are precisely ln 2, as expected
the highT loss of entropy associated with moment formati
and then lowT moment alignment. Clearly, this provides
good understanding of the strong coupling specific heat
well as demonstrates the reliability of our approach to co
puting C(T).

Further confirmation of the accuracy of ourC(T) calcu-
lations is evident by comparing results for the numerical d
ferentiation, the exponential fit, and the ME techniques
shown in Figs. 7 and 8. It is seen that the agreement betw

t FIG. 6. Results for the specific heat atU510 and lattice size
636. The circles are numerical differentiation and the solid line
from the exponential fitting approach. The dotted line is the res
for C(T) at t50 ~that is, a single site!. The dashed line isC(T) for
the Heisenberg model withJ54t2/U50.4.

FIG. 7. Results for the specific heat atU54 and lattice size 6
36. The exponential fitting~full line! and ME results~dashed line!
are in good agreement with direct numerical differentiation of
QMC data. Both smooth out the noise associated with direct
merical differentiation of the QMC data, though ME appears
broaden the results perhaps a bit too much.
6-5
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all three approaches is good. Figures 7 and 8 also empha
that both the exponential fit and ME techniques are w
suited to capturing the two energy scales in the problem.
also interesting to comment on theU dependence of the ar
eas under the specific heat curves of Fig. 6, 7, and 8. AU
decreases into the weak coupling regime, the lowT peak has
less and less entropy. ForU52 the area is only about ln 2/2
This will be discussed at greater length shortly.

When the specific heat curves for differentU are plotted
together, as in Fig. 9, one sees that there is a nearly unive
crossing at high temperature. There has been conside
recent discussion of this phenomenon, both its occurrenc
experimental systems such as3He and heavy fermion sys

FIG. 8. Results for the specific heat atU52 and lattice size 6
36. The exponential fitting~full line! and ME results~dotted line!
are both in good agreement with direct numerical differentiation
the QMC data. As atU54, ME produces somewhat broader pea
The dashed line is the specific heat for the noninteracting li
(U50).

FIG. 9. The specific heat curves for differentU values show a
nearly universal high-temperature crossing for the two-dimensio
Hubbard model, as has previously been observed in DMFT an
several experimental systems.
12511
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tems, and models such as the Hubbard Hamiltonian.15–17 In
the case of the Hubbard model, the crossing has been ar
to follow from the fact that the high-temperature entropy
independent ofU, ln 45*0

`C(T,U)dT/T, which implies that
05*0

`]C/]UdT/T. Hence]C/]U must be positive for some
temperature ranges and negative for others, a condition
crossing to occur.16 The narrowness of the crossing region
traced ultimately to the linear temperature dependence of
double occupancy, the conjugate variable associated
U.16 In DMFT, two crossings were observed for the Hubba
model, with the high-temperature one being nearly univer
while the low-temperature intersections were considera
more spread out.

Previous studies in two dimensions3 exhibit crossings of
the specific heat atT* 51.6, with a crossing regionDT*
50.2. In Fig. 9 we confirm this result that a specific he
crossing occurs in two dimensions. While the crossings
the earlier study3 shift systematically withU, we instead see
a random fluctuation of the crossing point. This suggests
the width of the crossing we report here is dominated
statistical fluctuations as opposed to possible systematic
fects. We have also verified that the double occupancy h
linear temperature dependence at lowT, especially at weak
coupling, which is the criterion established for a univers
crossing point.

The position of the two peaks as a function ofU is shown
in Fig. 10. The strong coupling analysis gives us firm p
dictions for the peak positions at largeU: First, the t50
result tells us that the highT peak is atThigh'U/4.8. The
deviation from this limit seen in Fig. 10 can be ascribed
quantum fluctuations. Meanwhile, the Heisenberg result
the low T peak is atTlow52J/358t2/(3U).34 We similarly
understand the position ofThigh at weak coupling from the
U50 analysis:Thigh't51 in units wheret51. The value of
Tlow for weak coupling is somewhat more problematic.
three dimensions, the Nee´l temperature which describes th

f
.
it

al
in

FIG. 10. Position of the high-T and low-T peaks of the specific
heat. The dotted line is the Heisenberg limtT;2J/3, the full line
corresponds to thet50 limit, T;U/4.8 and the dash-dotted lin
corresponds to an RPA-like form for the temperature scale of
antiferromagnetic spin fluctuations,T;t exp@22pAt/U#.
6-6
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SIGNATURES OF SPIN AND CHARGE ENERGY SCALES . . . PHYSICAL REVIEW B 63 125116
onset of long-range magnetic order, has a nonmonotonic
havior with U,5,35 first rising8 at small U as TN
}exp@22pt/U# and subsequently falling back down asTN
}t2/U at largeU. In the 2D case studied in this paper,TN
50. Nevertheless, in weak coupling, both the random ph
approximation8 and Hartree-Fock calculations give a fini
TN}exp@22pAt/U# in 2D. It is tempting in this case to
interpret this energy scale as that of the short-range
fluctuations which give rise to the low-temperature peak inC
at weak coupling, and similarlyt2/U as the corresponding
energy scale at strong coupling. Indeed, both the increas
small U, consistent with the exponential form, and the su
sequent decrease can be seen inTlow in Fig. 10. It might also
be noted that the entropy in the low-T Hartree-FockC(T)
peak goes to 0 asU→0, which is also consistent with th
decreasing entropy under the low-T QMC C(T) peak asU
becomes small.36

Finite size effects are illustrated in Fig. 11, which sho
the data for the specific heat, obtained by finite different
of the energy data, on 636 and 10310 lattices atU52. As
is seen, the error bars as inferred from the scatter in the
are of the same size as any possible systematic effec
determinant QMC, finite size effects are largest at weak c
pling for the range of couplings that we considert,U
,1.5W, whereW58t is the bandwidth, so this data repr
sents a rather stringent test of possible lattice size de
dence of our results for the thermodynamics.

We now turn to the issue of the separate contributions
the kineticK and potentialP energies to the specific heat. A
discussed in the Introduction, we might associate the cha
peak with the potential energy, since the energyU is what
enforces double occupancy and reduces charge fluctuat
Since the energy scaleJ54t2/U arises from virtual hopping
processes, it is more naturally associated with the kin
energy. At strong coupling this division describes the m
ping of the Hubbard model onto the Heisenberg model,
then the specific heat of the Heisenberg model itself,
works extremely well quantitatively, as seen in Fig. 6.

At intermediate coupling it is not so natural to consid
separately the derivatives of the kinetic and potential en
gies, as these quantities mix dramatically. Indeed, the be

FIG. 11. Comparison of results for the specific heat atU52 and
lattice sizes 636 and 10310.
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ior of the local moment shown in Fig. 1 indicates that atU
54 the potential energy in fact contributes both to the lo
and high-temperature structure ofC(T).

Figure 12 showsdP/dT and dK/dT for U52,4,10. At
strong coupling U510, dP/dT has a high-temperatur
maximum, whiledK/dT has a low-temperature peak, as e
pected. In the combined specific heat, then,P and K are
responsible for the charge and spin peaks respectively. In
estingly, however, even at largeU, dP/dT has a significant
negative dip at lowT, reflecting the potential energy cost o
delocalization. As we have remarked, this effect has pre
ously been noted in the 1D Hubbard model and DMFT.9,15

The positions of the contributions ofdP/dT anddK/dT
to C(T) are exchanged asU is decreased. Finally, atU52, it
is the potential energy which is responsible for the lo
temperature ‘‘spin’’ peak, and the kinetic energy for the hi
temperature ‘‘charge’’ peak.

The entropyS can also be obtained as the area un
(1/T)C(T), as well as the separate kinetic and potential c
tributions. Figure 13 shows the results atU52, U54 and
U510. In all cases the value ofSat high temperature equal
the expected 2 ln 2 to within a few percent. At strong co
pling, U510, the offsetting kinetic and potential contribu
tions seen in the low-T peak region in Fig. 12 are reflected a
well in Fig. 13. Nevertheless, the total entropy~solid curve!
shows a shoulder at ln 2 and then the final high-tempera
value of 2 ln 2 reflecting the two peaks in Fig. 6, which co
respond first to the ‘‘Heisenberg’’ disordering of the spi
and then at higher temperature to the destruction of lo
moments. At weak coupling, the initial increase in entropy
low T comes from the temperature dependence of the po
tial energy which, as we have seen, is what gives rise to
low-T peak in C(T). The area under the low-T peak in

FIG. 12. The separate temperature derivatives of the kinetic
potential energy. At strong coupling, the temperature dependenc
the potential and kinetic energies give rise to the ‘‘charge’’ and s
peaks inC, respectively. This attribution is interchanged at we
coupling.
6-7
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C(T)/T is reduced from its largeU value of ln 2. Certainly
one origin of this decrease is the reduction of the local m
mentmz

2 from its largeU valuemz
251 at smallU, as seen in

Fig. 3. The entropy associated with local ordering of m
ments scales with the moment size.36

C. Magnetic correlations

It is natural to associate the low temperature feature in
local moment and therefore the low-T peak inC(T) with the
onset of antiferromagnetic correlations between neighbo
spins. To understand how these correlations develop we h
calculated the spin-spin correlation function between nei
boring siteŝ SiSi1 x̂& and the magnetic structure factorS(Q).
Figure 14 shows these two quantities as a function of te
perature forU52. The inset shows the derivatives of th
spin-spin correlation function for neighboring site

FIG. 13. The temperature dependence of the entropy.

FIG. 14. Spin-spin correlation between neighboring sites
magnetic structure factor as a function of temperature for a 636
lattice with U52. The insets show the derivatives of these tw
quantities with temperature. Error bars, not shown, are smaller
the size of the points.
12511
-

-

e

g
ve
-

-

(dSiSi1 x̂ /dT) and for the magnetic structure facto
@dS(Q)/dT# with respect to the temperature: the sharp pe
form roughly at the same position as the specific heat ha
low-T peak, pointing to its magnetic origin. In principle,
study of larger lattices would help determine conclusive
whether the peak inC(T) is associated with short or lon
range order. In practice, such simulations require too m
computer time. We will, however, make some indirect arg
ments concerning this issue in the following section.

IV. DENSITY OF STATES AND OPTICAL CONDUCTIVITY

A. The density of states

While the standard interpretation of the two peak struct
in the specific heat in terms of the freezing out of charge a
spin fluctuations, at high and lowT respectively, is consisten
with our data at largeU, Fig. 12 emphasized that such
picture is not as useful at weak coupling.

Greater insight into the physics behind the specific hea
obtained by looking at the dynamics. Figure 15 shows res
for the density of statesN(v) for U51,2,4,6 and decreasin
temperatures. At highT the density of states consists of
single, very broad, bump with maximum atv50. As T is
lowered for the smallerU values~e.g.,U52), N(v50) first
increases as a quasiparticle peak develops atv50.29–31This
peak appears to be very similar to that found in multiba
models such as the periodic Anderson model, where i
associated with a Kondo resonance. AsT is lowered yet fur-
ther,N(v) then begins to decrease as a dip begins to form
the center of the quasiparticle peak.

For largerU, on the other hand~e.g.,U56), only the dip
develops with decreasing temperature, and soN(v50) al-
ways decreases asT is lowered. This behavior is emphasize
in Fig. 16 which showsN(v50) as a function of tempera

d

an

FIG. 15. The temperature evolution of the density of states
U51,2,4,6 on a 636 lattice. ForU51,2, asT is lowered, the
single broad peak first evolves into a sharper quasiparticle p
before a pseudogap opens. The quasiparticle peak is washed o
U increases.
6-8
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ture for U52,4,6. The temperature at whichN(v50) be-
comes small is seen in Fig. 16 to increase withU, and it
appears correlated with the position of the low-T peak in
C(T). Indeed, the derivative ofN(v50) is maximum at the
same temperature whereC(T) has its low-T peak~indicated
by arrows in the plot!.

This ‘‘pseudogap’’ in the density of states is one of t
central features of the 2D Hubbard model under recent
cussion, since it is one of the most interesting features of
normal state of the high-temperature superconductors in
underdoped regime.37 As the pseudogap has ad-wave sym-
metry, similar to the superconducting order parameter its
it is believed to arise as a result of short-range spin fluct
tions which might also play a role in the pairing. Th
pseudogap’s existence has a long history of discussion,
debate, in the numerical literature on the Hubbard mo
which we shall now review, since concerns about poss
finite size effects in the pseudogap may bear on similar c
cerns in the behavior of the specific heat.

The dynamical data presented in Figs. 15 and 16 do
make a fully compelling case for the relation between
low-T peak inC(T) and the pseudogap, since they are fo
single fixed lattice size. A particular issue is the behavior
the density of statesN(v) of the half-filled Hubbard mode
in the thermodynamic limit. Quantum Monte Carlo resu
concerning this question are still evolving. Early simulatio
had the somewhat surprising conclusion that a pseudoga
N(v) was present at weak to intermediate coupling only
T50 in the thermodynamic limit. That is, while on a fixe
lattice sizeL a gap inN(v) develops at a finite temperatur
T, it would go away if the lattice size were increased32

Meanwhile, at strong coupling, the same work found
pseudogap persists at finiteT even as the system size in
creases. This behavior was interpreted as reflecting the
that long-range antiferromagnetic correlations are pres
only at T50, and that such long-range correlations we
required for a gap inN(v) for small U. This interpretation
was questioned, however, since one might expect

FIG. 16. The zero frequency density of states atU52,4,6 and
636 lattice. The arrows indicate the location of the low-T peaks in
the specific heat.
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pseudogap to depend only on the existence of short-ra
antiferromagnetic correlations. Such local order should fo
at a temperature which is independent of lattice size, lead
to the conclusion that the pseudogap should be present b
that temperature even on large lattices.

If the original suggestion that the finite temperatu
pseudogap disappears at weak coupling in the thermo
namic limit were the case, it might raise similar questio
about possible finite size effects in our results for the l
temperature structure of the magnetic moment and spe
heat. We believe this is not a concern for three reasons. F
one can consider the limit of very weak coupling. As w
already see in Fig. 8, the high-T peak inC(T) is well fit by
a noninteracting calculation, and specifically therefore com
from the kinetic energy. If the local moment~potential en-
ergy! did notevolve at lowT, thenC(T) would have a single
peak structure. Therefore, our separate finite size sca
analysis for the moment and the specific heat support e
other. Second, we have presented data at different finite s
~Fig. 11! which show no evidence for the low-T peak shifting
with increased lattice size. Finally, recent work suggests
the pseudogap exists in the thermodynamic limit at we
coupling and is not a finite size effect there.38–41

B. The optical conductivity

The density of states itself does not present a comp
picture of the nature of the excitation gap. A more refin
view may be obtained by looking at the optical conductivi
as shown in Figs. 17–19. These results show that the H
bard model has a nonzero charge gap, even at weak to i
mediate coupling whereU is less than the bandwidth. W
also examined the dynamic spin susceptibility~not shown!
and found the spin gap vanishes, as is reasonable sinc
2D Hubbard model has long-range magnetic order atT50
and hence ungapped, power law, spin wave excitations.

FIG. 17. The frequency dependence of the optical conducti
for U52 and different temperatures. Inset: The zero freque
value as a function of temperature, indicating the opening of a M
gap.
6-9
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V. CONCLUSIONS

In this paper we have examined carefully the lo
temperature structure of the local moment and specific h
of the two-dimensional Hubbard model. A striking concl
sion of our work is that the two peak structure in the spec
heat is preserved down toU5t5W/8, whereW58t is the
bandwidth. In one dimension, the coalescence of the spin
charge peaks appears to occur at much largerU, namely, the
one-dimensional bandwidth. Meanwhile, in infinite dime
sion, the peaks also come together at an interaction stre
associated with an average kinetic energy per particle co
sponding to half the two-dimensional bandwidth. Howev
we have pointed out that the argument that the peaks c
together which is based on a comparison of the scales 4t2/U
and U might be flawed, as the weak coupling spin ener
scale is instead set byt exp(22pAt/U). This leaves open
the question of why the separation of the specific heat ene
scales is maximal in intermediate dimension. Possibly
half-filled two-dimensional Hubbard model is unique due
the unusual character of its noninteracting density of state
the Fermi energy.7 However, it should also be recalled th
the DMFT studies have been restricted to the paramagn
phase, which may have an important impact on the existe
of two well defined peaks. Finally the existence of the N
gaoka state in two dimensions, but not in one or infin
dimensions, indicates that there may be no reason to ex
systematic behavior here as a function of dimension.42

We have emphasized that the standard nomencla
which identifies the high-temperature peak in the spec

FIG. 18. Same as Fig. 17 exceptU54.
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heat as due to ‘‘charge’’ fluctuations and the low
temperature peak as due to ‘‘spin’’ fluctuations while use
at strong coupling, needs to be refined. At weak coupling,
high-temperature peak comes from the kinetic energy w
the low-temperature peak comes from the potential ene
By comparing with the behavior of the density of states,
have argued that the structure ofC(T) may be associated
with ‘‘pseudogap’’ formation, that is, the onset of sho
range antiferromagnetic correlations between near-neigh
spins.

A detailed understanding of the relationship of the ene
and local moment formation is desirable in a number of c
texts in using model Hamiltonians to describe strongly c
related materials. In particular, while minimization of th
energy determines the dominant low-temperature phases
various types of behavior of the local moment~for example,
screening by conduction electrons in multiband models! can
also provide important clues concerning the suitability
different models in describing the low temperature phys
of specific materials.43
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