PHYSICAL REVIEW B, VOLUME 63, 125116

Signatures of spin and charge energy scales in the local moment and specific heat
of the half-filled two-dimensional Hubbard model
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Local moment formation driven by the on-site repulsldris one of the most fundamental features in the
Hubbard model. At the simplest level, the temperature dependence of the local moment is expected to have a
single structure af ~U, reflecting the suppression of the double occupancy. In this paper we show low-
temperature quantum Monte Carlo data for half-filling which emphasize that the local moment also has a
signature at a lower energy scale which previously had been thought to characterize only the temperatures
below which moments odifferentsites begin to correlate locally. We discuss implications of these results for
the structure of the specific heat, and connections to quasiparticle resonance and pseudogap formation in the
density of states.
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I. INTRODUCTION =UnTnl=(U/2)(1—m§), this growth in the local moment is
synonymous with a decrease in the potential energyl as
The finite temperature properties of the two-dimensionadecreases, and hence a peakCi(ir) at T~U. Once mo-
Hubbard model have been extensively studied both analytiments are formed, the half-filled Hubbard model maps onto
cally and numerically. Quantum Monte Carl¢QMC) is es-  the spin-1/2 antiferromagnetic Heisenberg model, with ex-
pecially effective at half-filling, where there is no sign prob- change constart=4t2/U, whose specific heat has a peak at
lem. From calculations of the magnetic structure factor,T~J associated with magnetic ordering. In sum, one expects
susceptibility, compressibility, density of states, and the elece(T) for the strong coupling Hubbard model at half filling to
tron self-energy, a clear picture has emerged concerning thgave a “charge peak” aT~U and a “spin peak” aff ~J.
nature of the short and long range magnetic order, the Motthis strong coupling argument further suggests that the tem-
gap, and the quasiparticle dispersion. As we shall discusgerature derivatives of the potential and kinetic energies are
the properties of the two-dimensional half-filled Hubbardassociated with the high- and low-temperature specific heat
Model are in several ways rather peculiar, for example, thepeaks, respectively.
existence of long range order in the ground state at both On the other hand, the behavior of the specific heat for
weak and strong coupling. small U in the two-dimensional Hubbard model is still un-
While the specific hea€(T) has been computed by a clear. In particular, it is not known whether a two peak struc-
number of groups in one dimension, principally by Bethetyre is present for all values of the interaction or if these
ansatz techniquésthere have been few QMC studies of ¢coalesce into a single peak at smell That the two peaks
C(T) gog the two- and three-dimensional Hubbard yight merge is suggested by the fact that the charge and spin
models?™ The behawor for IargeJ is yvell understood and nergy scales) andt?U approach each other &s is de-
one expects, as in the one-dimensional case, a tWo pegkeased. However, the situation is not so straightforward, be-
structure inC(T), with a broad high-temperature peakTat .5 se the strong coupling form for the energy scale for spin
~U associated with “charge fluctuations,” and a NAITOWeT o dering crosses over to a weak coupling expregdion

peak at lower temperatures associated with “spin fluctuaf exp(~ 2m\t/U), which at smallU is still well separated

tions._” from the energy scalgsandU.

This two peak structure of the Hubbard model car? be The QMC results reported in this work are consistent with
understood from a strong coupling wgwpomt as follows: At ch weak coupling behavior at small That is, one of our
temperatures which exceed the on-site repulSionU, the oy fingings is thatC(T) shows two distinct peaks which
up and down electrons are decouplddn;)=(n;)(n;)  persist to couplings an order of magnitude less than the non-
=%, at halffiling, and the local moment(mZ) interacting bandwidth. It may be that the half-filled two-
=((n;—n))?)=(n;+n,—2nn;)=1-2(n;n;)=0.5, its dimensional Hubbard model is unique in this respect, since,
uncorrelated value. At the temperature schteU, double  as we review below, studies in one dimension and within
occupancy begins to be suppressedn )—0, andm§—>1. “dynamical mean field theory'(DMFT) show a merging of
Since the potential energy in the Hubbard model is st the peaks at values df roughly equal to the bandwidth.

0163-1829/2001/632)/12511611)/$15.00 63125116-1 ©2001 The American Physical Society



PAIVA, SCALETTAR, HUSCROFT, AND MCMAHAN PHYSICAL REVIEW B63 125116

Indeed, the two-dimensional half-filled Hubbard model on aconductivity and comment on their consistency with the lo-

square lattice has unusual nesting features in its noninteraatal moment and specific heat.

ing band structure, as well as a logarithmic divergence of its

density of states at the Fermi level which have previously Il. MODEL AND METHODS

been noted to enhance antiferromagnetism anomaldusly.
Whether this is the case or not, there is as yet no compel-

ling evidence of the appearence of a weak coupling energy The two-dimensional Hubbard Hamiltonian is

scalet exp(—27t/U) in the specific heat in other dimen-

A. The Hubbard Hamiltonian

sions. In one dimension, exact diagonalization in small H=—t> (clc,+ccy,)

chain§ and QMC calculation’d suggest the two peaks (o e e

merge, but disagree with respect to the interaction strength at 1 1

which this occurs. Exact diagonalization is limited to chains + UE (”iT_ - (nu_ _) —ME (ni+ni). (1)
of very modest extent, and finite size effects tend to be large i 2 2 i

for small U. Meanwhile, QMC work did not reach low Here c! (c;,) are creatiofdestruction operators for a fer-

enough temperatures to resolve the Fwo peaks even for Iarqﬁion g]{ spin o on lattice sitei. The kinetic energy term

values ofU where they almost certainly both exist. Bethe-é.nCIudes 2 sum over near heighbo(a’;j) on a two

Ansatz calculations help clarify this issue, but focus on the,. ) . . i e

largeU limit.**~*3Despite these various caveats, the conseng'men.s'?nal Tquare Iattu_:e,fand the ;]nte_r%ctlon term |zwrltten

sus of these approaches is that the spin and charge pe Raparticle-hole symmetric form so that=0 corresponds to

merge atU/t~4, the one-dimensional bandwidth. Quantum alffilling (ny; +n;)=1 fqr all Hamiltonian paramete_tsU

transfer matrix calculatiod$ also show the merging of the ?;rietteenr:p_eiature'ﬁ. We will henceforth set the hopping pa-

two peaks atJ/t~4. L . . Lo :
Coalescence of the specific heat peaks has also been seenEquaEli'mlj3 qltjr?nt't'es .ch.f n;}te;gs_t ('ant/rgﬁ_ ptc';pelr mcllude the

in DMFT which studies the system in the limit of high enertgy 2_<_ ) f Spgc'l'g ed tr: ' ghobca mo-

dimension's~17 There, the Hubbard model is studied with a MeNt (Mz)=((ni;—n;)*), anc the near neighbor spin-—

Gaussian density of states of unit variance, and the spin argPin correlation functionSS;.5). To probe longer range

charge peaks are found to mergeat 1.5. The fact that the Magnetic order, we evaluate the structure factor

bandwidth is undefined complicates comparisons with results 1

in finite dimension, but one can still examine the ratiolbf S(Q)= — 2 eiQ~(i—i)<(niT_nil)(n”_njm; 2)

to the kinetic energy per particle, which is finite for a Gauss- L™ 93

ian density of states. The valug/t~4 in two dimensions whereQ=(, ) is the antiferromagnetic wave vector.

has the same ratio d to kinetic energy as the interaction g glso evaluate two dynamic quantities. The density of
strength at wh|ch_ _the twp _peak .structu.re is lost in DMFT-statesN(w) is given implicitly from QMC data for the
However, an additional difficulty in the interpretation of the imaginary time Green's function

DMFT results, in addition to the use of a Gaussian density of

states, is the restriction of the calculations to the paramag- 1 +o e N(w)
netic phase, and therefore the neglect of antiferromagnetic G(7)= N E (c(p,r)cT(p,0)>=J dwT'
fluctuations. More precisely, the low energy feature in the P o e "+l
specific heat observed in DMFT is not associated with mag- ©)

netism, as is the case in one and two dimensions. Likewise, the optical conductivityo,,(w), is related to

It is the purpose of this paper to present a detailed study)MC data for the imaginary time current-current correlation
of the temperature dependence of the local moment and thfanction
associated features in the specific heat for the half-filled two-
dimensional Hubbard Hamiltonian. A focus of our work will ] ) te e g (o)
be on extending the strong coupling picture of the two peak Ty )= (] x( T)Jx(0)>:f do——"——
structure ofC(T) to intermediate and weak coupling. As we o e -1
shall show, the connection of moment formation and mo-
ment ordering with the high- and low-temperature peaks, re- i (7)=—it>, (CiT+§< Uci<r_CiJr(rCi+;<,U)' (4)
spectively, in the specific heat is modified. At the same time, o ’
we will describe two recently developed techniques for compg N(w) and o,,(w) are computed using the Maximum

puting the specific heat which hold certain advantages oveg oy (ME) technique to invert the integral relations. We

approaches previously used. These new techniques also ptain our default models using the annealing method, as
low us to compute the entropy and free energy, quantitie§ascribed in Ref. 19.

typically not so easy to obtain with Monte Carlo. A fascinat-
ing conclusion of the DMFT studi&$ !’ concerned the ex-
istence of a universal crossing point of the specific heat
curves for different). We shall show such a crossing occurs  We use determinant QMQRef. 20 to evaluate the ex-
also in two dimensions. Finally, we will discuss results for pectation values above. This approach treats the electron-
dynamical quantities such as the density of states and opticalectron correlations exactly, and at half-filing, where we

B. Determinant quantum Monte Carlo
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focus this work, is able to produce results with very small
statistical fluctuations at temperatures low enough that the
ground state has been reached. The technique is limited to
finite size lattices, and we will show appropriate scaling
analyses to argue that we extract the thermodynamic limit, 2nd differentiating to get the specific heat

— )

. . r?Eme(T)
C. Calculation of specific heat CndT)=

We will evaluate the specific heat in three waysAll
begin by using QMC to obtaik,,= E(T,) and the associated f d
error barséE,, at a sufficiently fine grid oN; discrete tem- ww
peratures . We used values af 7 small enough so that the
associated systematic errors were negligible and have no ef- ®)
fect on the results. For low and intermediate temperature th
imaginary time discretization of the QMC i87=1/8. For
the strong coupling regime other values &f were also
tested A7=1/12 and 1/16). In the high temperature region
A7 is not kept constant, instead it is decreageslially by a
factor of 1/2 asT is increased. This is necessary sinke
=1/(LT) andL must be greater than or equal to one. Thus a
T is increased\  must become small. These smalf only
reduces systematic errors yet further.

The first approach is straightforward numerical differen-
tiation of the energye(T,). The second utilizes a fit to the

JF
B e (a+ 2B |

The integral equation fdE,(T) is inverted by using the ME
method to obtaipe(w) and pg(w) from the QMC data for

We denote byE,.(T) the energy obtained from the
resultlngpp(w) and pg(w).

This ME approach differs in philosophy from the fitting
approach which begins with a physically reasonable func-
Yional form E.(T) and then minimizes the deviatigyf from
the numerical data. Instead, ME computes the most probable
spectrump(w) given the energy dat&(T,) and kernals
F(B,w) and B(B,w), without presupposing a particular
functional form. Despite this difference, we will show that

numerical dqta for the energﬁ(Tn),_ and the third is an the results of the two techniques are very similar, and agree
approach using the ME method to invert the d&(@,) to quite well with numerical differentiation.

obtain a spectrum of excitations of the system. These las
two approaches were introduced relatively receffthy

Therefore we shall describe them in some detail. D. The entropy and free energy
In our fitting method, whose results we denotety(T), Both the ME and fitting techniques allow the specific
we match the QMC dat&, to the functional forrf? heat, entropy, and free energy to be computed by the stan-
dard formulas
M
Eo(T)=E(0)+ >, ce” 4, (5) dE(T)
=1 CM=—47
by adjusting the parameters andc, to minimizeé
T fTC(T,)dT’
N = | —=dT’,
oL BT Bl © D=,
NT n=1 (5En)2
F(T)=E(T)-TST). 9)

The number of parameteid is chosen to be about one—
fourth of the number of data points to be fit. Smaller num-Here E(T)=E(T) or E,T).

bers do not allow a good fit, while larger ones overfit the In the case of the fitting technique, we can evaluate the
data. We find that a range of intermedidieexists which  sum rule

gives stable and consistent results.

Calculation of C(T) by fitting E(T) to polynomials has C(T) M ¢
also been used recenflyput requires at least two separate —f =2 ——2 In2—-S,, (10
functions to be used at high and low temperatures. An ad- =114
vantage of Eq(5) is that it uses a single functional form over
the entire T range, and has the correct low- and high-
temperature limitsC(T)—0.

The specific heat can also be evaluated by differentiatin
an expression which relates the energy to the density
states of Fermi and Bose excitations in the syéfem

which ties the high-temperature entropy to the logarithm of
the dimension of the Hilbert space. THe=0 entropy S,

ust of course vanish in the thermodynamic liffiEor the

D Hubbard model ay#0 we find the termS, vanishes
even on finite lattices, but it may be present in other Hamil-
tonians. In the present work, the sum rule of EfO) is
satisfied to a few percent. For the maximum entropy method,

+oo . . . . .
EndT)= _f dw o[F(8,0)pp(w)+B(B,0)ps(w)], a similar check is possible by integratipg . We now turn
—oo to the results of our simulations.
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FIG. 2. Data for the local moment for different lattice sizes. The

FIG. 1._The temperature depe_ndence Of_ t_he Iocz_ﬂ_moment Fow temperature feature im§ remains present as the lattice size is
shown at fixedU=4 for a 6X6 lattice. In addition to rising al

~U, asT decreasesn? exhibits a second structure at lower tem-

perature. The error bars shown are smaller than the size of the,. . . . .
points pling? The ground state is antiferromagnetic, with the effec-

tive exchangd arising from virtual hopping of the electrons.
This virtual transfer reduces the degree of localization as can
be seen from the values ¢MmZ) at T=0 in Fig. 3. In the
low-lying excited states the deviations from the antiferro-
A. The local moment magnetic state reduce the virtual hoppings since the Pauli

In the Introduction we reviewed the standard argument foPfinciple forbids hopping when adjacent electron spins are
the expected behavior of the Hubbard model local momeml‘_e_rromagnet!cally aligned. Locall.zatlo.n is thereby |ncreased
Early determinant QMC work for the two-dimensional Hub- with increasing temperature, giving rise to the maximum at
bard model confrmed this, as did subsequent T+#0. This maximum at largé&J has also been observed in
investigation$® In Fig. 1 we show that an examination of ©N€ dimensiori. , _
m2 with a fine temperature mesh and at low temperatures At Weak coupling, we see the opposite effect. The local
reveals that after reaching a plateau at intermediate temperJioment has instead an additional increase at low tempera-
tures,m§ changes value again at a second, Iow-temperaturéf"e' This has a natural explanation in terms of the formation

scale?” We will come back to this point in more detail later,

increased.

IIl. EQUAL TIME CORRELATIONS—LOCAL MOMENT,
SPECIFIC HEAT, AND MAGNETIC ORDER

but it is worth commenting immediately that while the low- tob o e U=05 |
temperature structure nm§ is small compared to the size of ) l'i.;. —A—U=10 |
the growth at high temperature, it occurs over a much D DO “\\, —e—TU=2.0
smaller temperature range, and hence contributes a large 09 RN —»—U=4.0
peak in the specific heat. A I VTN Yy \.\ . —¥—U=60 ]
In order to determine whether this is a finite size effect, in « 08 \ \ —¢—U=8.0 +
Fig. 2 we show data on a range of lattice sizes from4to r ""”»»», '\\} —4—U=100
10X 10. The evidence for the existence of the low-energy 07} ’\:\\ —e—U=120
scale is robust as the lattice size is increased. We can aiso ¥ . oon,, \'\ """ t=0
make an extrapolation to the thermodynamic limit assuming 06| ama_, "---—ovo-o-.\.\ N : J
a correction which goes as the inverse of the linear system A ’\.\.\»\
size, as spin-wave theory indicates is appropriate for the full 05k e ————-E g AR R ]
structure factof® Tl
Additional insight is obtained by looking at the behavior 0.01 0.1 q 10 100
of m§ at different values otJ, as in Fig. 3. The data of Fig.
3 are replotted in Fig. 4 to emphasize the universal nature of T

the high temperature behavior and the fact that the initial

. . . FIG. 3. Temperature dependence of the local moment for differ-
increase in the local moment as temperature is decreased . . ;

. ent values of the on-site repulsidhon 6X6 lattices. The dashed
does indeed occur at a temperature scale séf.by

. T 5 line corresponds to the zero-hopping limit, fd.=12. The position
In the zero-hopping t&0) limit, (m3)=1fexd —U/

- S ) of the low-temperature feature first increases in temperatutd as
(2T)]+1}, which is monotonic withT, dropping from 1 at

' . Y i increases, but then gradually falls, as emphasized later in Fig. 10.
T=0 to 1/2 atT—c. Why is the maximum i{m;) shifted  The error bars are smaller than the size of the points and are not

from T=0 when a small hopping is turned on at strong cou-shown.

125116-4



SIGNATURES OF SPIN AND CHARGE ENERGY SCALE. . . PHYSICAL REVIEW B 63 125116

07 TR AL L] TR AL
0.1} 4 T U=10 e finite differenc
F 3 06 exponential fit
Y | =0 ]
E 0.5 i - - - — Heisenberg Model |
= 7~
001} 3 = _
A F
o @)
v -
N’
1E-3 5
: MR | Ll L2l MR | Ll
0.01 0.1 1 10 100 1000
T T

FIG. 4. Scaled version of the data of Fig. 3. The plot shows that F|G. 6. Results for the specific heat ldt=10 and lattice size
for high T the local momenm?2= 3+ U/(8T), that is, the deviation ~ 6x 6. The circles are numerical differentiation and the solid line is
of the local moment from its noninteracting valgeexhibits a uni-  from the exponential fitting approach. The dotted line is the result
versal behavior with a temperature schle for C(T) att=0 (that is, a single sife The dashed line i€(T) for

the Heisenberg model with=4t%/U=0.4.
of local magnetic order. If there is an energy gain with or-
dering, th_erg will bg an associated preference for large MOseautifully fit by combining the zero-hoppirtg=0 specific
ments. Itis interesting to note that the DMFT restiitio not heat, which lies right on the high Hubbard model results,
observe this additional moment enhancement at weak Colnq the Heisenberg specific héawhich similarly lies right
pling. Instead, the local moment always has a maximum as gy, the lowT Hubbard model results. The areas under both
function of temperature. This is, perhaps, a consequence @he |ow and highT peaks are precisely In 2, as expected for
restricting the DMFT to the paramagnetic phase. the highT loss of entropy associated with moment formation
and then lowT moment alignment. Clearly, this provides a
B. The energy and specific heat good understanding of the strong coupling specific heat, as

Figure 5 shows the QMC results f&(T,) together with ~ Well as demonstrates the reliability of our approach to com-
the exponential fitE,(T). Calculation of the specific heat PUingC(T).
brings out the low-temperature featuresE(T). We begin Further confirmation of the accuracy of o0(T) calcu-
our analysis of this data for the specific heat by looking atations is evident by comparing results for the numerical dif-

the data at relatively strong coupling/ € 10) as shown in ferentia_tion_, the exponenFiaI fit, and the ME techniques as
Fig. 6. It is seen that the results for the Hubbard model ar§hown in Figs. 7 and 8. Itis seen that the agreement between

LA | MR Ty MR | T 0.7 —r—rrrrrT T ——rrrrrT —r—rrrrr
B U=4 _ F U=4 ® finite difference
00 ® QMC values //"( -~ 0.6 : exponential fit |
[ eeeeees exponential fit M=6 / T 05l = = = -maximum entropy ]
05F----- exponential fit M=7  f < )
| e exponential fit M=8 ] 04} 4
£ ro 4 | Sodf -
NIV / N T
rg @)
a8 / ' 0.2f -
45} 4 .
5 0.1} -
ool | 00} % e
T T R S 0.01 0.1 1 10 100
0.01 0.1 1 10 100 T
T FIG. 7. Results for the specific heat@dt=4 and lattice size 6

X 6. The exponential fittingfull line) and ME resultgdashed ling
FIG. 5. QMC valueg(circles for the energy, and fittings pro- are in good agreement with direct numerical differentiation of the
vided by Eq. 5. HerdJ=4 and the lattice is &6. The different QMC data. Both smooth out the noise associated with direct nu-
lines (dotted, dashed, dot-dasheshow that the fit is stable over a merical differentiation of the QMC data, though ME appears to
range of values of the number of fitting parameters. broaden the results perhaps a bit too much.
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FIG. 8. Results for the specific heatldt=2 and lattice size 6 FIG. 10. Position of the high-and lowT peaks of the specific

X 6. The exponential fittingfull line) and ME result{dotted lin@  heat. The dotted line is the Heisenberg lit 2J/3, the full line
are both in good agreement with direct numerical differentiation ofcorresponds to the=0 limit, T~U/4.8 and the dash-dotted line

the QMC data. As at) =4, ME produces somewhat broader peaks. corresponds to an RPA-like form for the temperature scale of the
;I'Se g;ashed line is the specific heat for the noninteracting limityntiterromagnetic spin fluctuationg;~t exg — 27 t/U].
tems, and models such as the Hubbard Hamiltofiat.In

all three approaches is good. Figures 7 and 8 also emphasitiee case of the Hubbard model, the crossing has been argued
that both the exponential fit and ME techniques are wellto follow from the fact that the high-temperature entropy is
suited to capturing the two energy scales in the problem. It isndependent olU, In4=[jC(T,U)dT/T, which implies that
also interesting to comment on thedependence of the ar- 0= [JdC/dUdT/T. HencedC/dU must be positive for some
eas under the specific heat curves of Fig. 6, 7, and 8JAs temperature ranges and negative for others, a condition for
decreases into the weak coupling regime, the Topeak has  crossing to occut® The narrowness of the crossing region is
less and less entropy. Fbr=2 the area is only about In2/2. traced ultimately to the linear temperature dependence of the
This will be discussed at greater length shortly. double occupancy, the conjugate variable associated with

When the specific heat curves for differdutare plotted  U.1® In DMFT, two crossings were observed for the Hubbard
together, as in Fig. 9, one sees that there is a nearly universalodel, with the high-temperature one being nearly universal,
crossing at high temperature. There has been considerablghile the low-temperature intersections were considerably
recent discussion of this phenomenon, both its occurrence imore spread out.
experimental systems such dsle and heavy fermion sys- Previous studies in two dimensicnexhibit crossings of
the specific heat al, =1.6, with a crossing regioA T,
=0.2. In Fig. 9 we confirm this result that a specific heat
crossing occurs in two dimensions. While the crossings in
the earlier study/shift systematically witHJ, we instead see
a random fluctuation of the crossing point. This suggests that
the width of the crossing we report here is dominated by
statistical fluctuations as opposed to possible systematic ef-
fects. We have also verified that the double occupancy has a
linear temperature dependence at [dyespecially at weak
coupling, which is the criterion established for a universal
crossing point.

The position of the two peaks as a functionlbfs shown
in Fig. 10. The strong coupling analysis gives us firm pre-
dictions for the peak positions at largé First, thet=0
result tells us that the highi peak is atTygy~U/4.8. The
deviation from this limit seen in Fig. 10 can be ascribed to
guantum fluctuations. Meanwhile, the Heisenberg result for
the low T peak is atT,,,,=2J/3=8t%/(3U).3* We similarly

FIG. 9. The specific heat curves for differedtvalues show a understand the position dfy, at weak coupling from the
nearly universal high-temperature crossing for the two-dimensiona) =0 analysisTgy~t=1 in units whereg =1. The value of
Hubbard model, as has previously been observed in DMFT and i, for weak coupling is somewhat more problematic. In
several experimental systems. three dimensions, the Nleemperature which describes the
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FIG. 11. Comparison of results for the specific hedt a2 and 05 .
lattice sizes &6 and 10< 10. 0.01

onset of long-range magnetic order, has a nonmonotonic be-
havior with U>>% first risin at small U as Ty
xexf —2=t/U] and subsequently falling back down &g FIG. 12. The separate temperature derivatives of the kinetic and
«t?/U at largeU. In the 2D case studied in this pap@, potential energy. At strong cogpling, thg temperature dependencg of
=0. Nevertheless, in weak coupling, both the random phas@e potgntlal and klr_1et|c energies give rise to_ the “charge” and spin
approximatioﬁ and Hartree-Fock calculations give a finite peaks_ inC, respectively. This attribution is interchanged at weak
Tyexd —2mt/U] in 2D. It is tempting in this case to c°UPINg
interpret this energy scale as that of the short-range spin
fluctuations which give rise to the low-temperature peakin ior of the local moment shown in Fig. 1 indicates thatat
at weak coupling, and similarly?/U as the corresponding =4 the potential energy in fact contributes both to the low-
energy scale at strong coupling. Indeed, both the increase f&nd high-temperature structure 6{T).
small U, consistent with the exponential form, and the sub- Figure 12 showsdP/dT and dK/dT for U=2,4,10. At
sequent decrease can be seemjp in Fig. 10. It might also ~ strong couplingU=10, dP/dT has a high-temperature
be noted that the entropy in the lolvHartree-FockC(T) ~ maximum, whiledK/dT has a low-temperature peak, as ex-
peak goes to 0 a8 —0, which is also consistent with the Ppected. In the combined specific heat, thénand K are
decreasing entropy under the IGWQMC C(T) peak asU responsible for the charge and spin peaks respectively. Inter-
becomes smaft estingly, however, even at lardé, dP/dT has a significant
Finite size effects are illustrated in Fig. 11, which showsnegative dip at lowT, reflecting the potential energy cost of
the data for the specific heat, obtained by finite differentiondelocalization. As we have remarked, this effect has previ-
of the energy data, onX66 and 10< 10 lattices aU=2. As  ously been noted in the 1D Hubbard model and DMFT.
is seen, the error bars as inferred from the scatter in the data The positions of the contributions afP/dT anddK/dT
are of the same size as any possible systematic effect. fi® C(T) are exchanged as is decreased. Finally, &t=2, it
determinant QMC, finite size effects are largest at weak couis the potential energy which is responsible for the low-
pling for the range of couplings that we considerU temperature “spin” peak, and the kinetic energy for the high
<1.5W, whereW=8t is the bandwidth, so this data repre- temperature “charge” peak.
sents a rather stringent test of possible lattice size depen- The entropyS can also be obtained as the area under
dence of our results for the thermodynamics. (L/T)C(T), as well as the separate kinetic and potential con-
We now turn to the issue of the separate contributions ofributions. Figure 13 shows the resultslat=2, U=4 and
the kinetick and potentiaP energies to the specific heat. As U=10. In all cases the value &at high temperature equals
discussed in the Introduction, we might associate the chargée expected 2 In2 to within a few percent. At strong cou-
peak with the potential energy, since the enethys what  pling, U=10, the offsetting kinetic and potential contribu-
enforces double occupancy and reduces charge fluctuatiori®ns seen in the lowW- peak region in Fig. 12 are reflected as
Since the energy scalk=4t2/U arises from virtual hopping well in Fig. 13. Nevertheless, the total entrofsplid curve
processes, it is more naturally associated with the kinetishows a shoulder at In2 and then the final high-temperature
energy. At strong coupling this division describes the mapvalue of 2 In2 reflecting the two peaks in Fig. 6, which cor-
ping of the Hubbard model onto the Heisenberg model, andespond first to the “Heisenberg” disordering of the spins
then the specific heat of the Heisenberg model itself, ané&nd then at higher temperature to the destruction of local
works extremely well quantitatively, as seen in Fig. 6. moments. At weak coupling, the initial increase in entropy at
At intermediate coupling it is not so natural to considerlow T comes from the temperature dependence of the poten-
separately the derivatives of the kinetic and potential enertial energy which, as we have seen, is what gives rise to the
gies, as these quantities mix dramatically. Indeed, the behalew-T peak in C(T). The area under the loW-peak in
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FIG. 13. The temperature dependence of the entropy.

) . . FIG. 15. The temperature evolution of the density of states at
C(T)/T is reduced from its large) value of In2. Certainly y=1,246 on a &6 lattice. ForU=1,2, asT is lowered, the
one origin of this decrease is the reduction of the local mosingle broad peak first evolves into a sharper quasiparticle peak
mentm§ from its largeU valuem§: 1 at smallU, as seen in before a pseudogap opens. The guasiparticle peak is washed out as
Fig. 3. The entropy associated with local ordering of mo-U increases.
ments scales with the moment si%e.
(dSS,;/dT) and for the magnetic structure factor
[dS(Q)/dT] with respect to the temperature: the sharp peaks
form roughly at the same position as the specific heat has its
local moment and therefore the lovpeak inC(T) with the Tow-T peak, pointin_g o its magnetic origin._ In principle_, a
onset of antiferromagnetic correlations between neighborinStUdy of larger Iatyces W.OU|d help determme conclusively

Suhether the peak ifC(T) is associated with short or long

spins. To understand how these correlations develop we have : X . X
range order. In practice, such simulations require too much

calculated the spin-spin correlation function between neigh-

: . o . computer time. We will, however, make some indirect argu-
boring sites(S;S.5) and the magnetic structure fac(Q). ments concerning this issue in the following section.

Figure 14 shows these two quantities as a function of tem-
perature forU=2. The inset shows the derivatives of the

C. Magnetic correlations

It is natural to associate the low temperature feature in th

spin-spin  correlation function for neighboring sites IV. DENSITY OF STATES AND OPTICAL CONDUCTIVITY
— T A. The density of states
0.0 ¢+ . . .
A Uu=2 o* While the standard interpretation of the two peak structure
o .,0/ 0.6 in the specific heat in terms of the freezing out of charge and
- o1k & 0.4 spin fluctuations, at high and lowrespectively, is consistent
7, ,’,«ﬁ/’ 02} , with our data at largdJ, Fig. 12 emphasized that such a
\Y M’ 0.0 picture is not as useful at weak coupling.
02 o . 01 KW Greater insight into the physics behind the specific heat is
A | '3 | e ' 0 UNERERAAMAN obtained by looking at the dynamics. Figure 15 shows results
—_ R ool for the density of stateN(w) for U=1,2,4,6 and decreasing
B - * 1 i - -
2y % -10 temperatures. At higfl the density of states consists of a
B 2f X . ; X . .
Il | N 20 single, very broad, bump with maximum at=0. As T is
g (L \’\N\, | | lowered for the smalled values(e.g.,U=2), N(w=0) first
w2 I pa S U | increases as a quasiparticle peak develops=a0 2°~3!This
V R S B T peak appears to be very similar to that found in multiband
0.01 0.1 1 10 100 models such as the periodic Anderson model, where it is
T associated with a Kondo resonance. s lowered yet fur-

ther,N(w) then begins to decrease as a dip begins to form in

FIG. 14. Spin-spin correlation between neighboring sites andhe center of the quasiparticle peak.
magnetic structure factor as a function of temperature forx# 6 For largerU, on the other han¢e.g.,U=6), only the dip
lattice with U=2. The insets show the derivatives of these two develops with decreasing temperature, andN¢@=0) al-
quantities with temperature. Error bars, not shown, are smaller thaways decreases dsis lowered. This behavior is emphasized
the size of the points. in Fig. 16 which showsN(w=0) as a function of tempera-
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) FIG. 17. The frequency dependence of the optical conductivity
FIG. 16. The zero frequency density of statesJat2,4,6 and o, y=2 and different temperatures. Inset: The zero frequency

66 lattice. The arrows indicate the location of the 1dwpeaks in -\ 4e as a function of temperature, indicating the opening of a Mott
the specific heat. gap.

ture for U=2,4,6. The temperature at whid#(w=0) be- )

comes small is seen in Fig. 16 to increase withand it ~Pseudogap to depend only on the existence of short-range
appears correlated with the position of the IGwpeak in  antiferromagnetic correlations. Such local order should form
C(T). Indeed, the derivative di(w=0) is maximum at the at a temperature which is independent of lattice size, leading
same temperature whe@(T) has its lowT peak(indicated  to the conclusion that the pseudogap should be present below
by arrows in the plot that temperature even on large lattices.

This “pseudogap” in the density of states is one of the If the original suggestion that the finite temperature
central features of the 2D Hubbard model under recent dispseudogap disappears at weak coupling in the thermody-
cussion, since it is one of the most interesting features of theamic limit were the case, it might raise similar questions
normal state of the high-temperature superconductors in thabout possible finite size effects in our results for the low
underdoped regim¥. As the pseudogap hasdawave sym-  temperature structure of the magnetic moment and specific
metry, similar to the superconducting order parameter itselfheat. We believe this is not a concern for three reasons. First,
it is believed to arise as a result of short-range spin fluctuapne can consider the limit of very weak coupling. As we
tions which might also play a role in the pairing. The ajready see in Fig. 8, the high-peak inC(T) is well fit by

pseudogap’s existence has a long history of discussion, angdnoninteracting calculation, and specifically therefore comes
debate, in the numerical literature on the Hubbard mode},om the kinetic energy. If the local momefpotential en-

which we shall now review, since concerns about possibl

%rgy) did notevolve at lowT, thenC(T) would have a single
finite size effects in the pseudogap may bear on similar co 9y (1) J

ms in the behavior of th ific heat r‘p')eak structure. Therefore, our separate finite size scaling
cems € behavior of the speciiic neat. Oz%nalysis for the moment and the specific heat support each

m a-:-(re]eadm%mégilqSg}%grsgfgtfe(i ISWé:I?esl.Eitji-(?natr)]gtV]\;gec:]O tEeother. Second, we have presented data at different finite sizes

low-T peak inC(T) and the pseudogap, since they are for a(':.'t%'.ll) Whlcg Thtct)'w no evu'j:(_anc;? for the IIOWp(le(ak sh|ft|r;g that
single fixed lattice size. A particular issue is the behavior ofVIth Increased 1attice size. Finaily, recent work suggests tha

the density of stateBl(w) of the half-filled Hubbard model "€ Pseudogap exists in the thermodynamic limit at weak
in the thermodynamic limit. Quantum Monte Carlo resultsCOUPliNg and is not a finite size effect thefe!

concerning this question are still evolving. Early simulations
had the somewhat surprising conclusion that a pseudogap in
N(w) was present at weak to intermediate coupling only at
T=0 in the thermodynamic limit. That is, while on a fixed  The density of states itself does not present a complete
lattice sizeL a gap inN(w) develops at a finite temperature picture of the nature of the excitation gap. A more refined
T, it would go away if the lattice size were increaséd. view may be obtained by looking at the optical conductivity,
Meanwhile, at strong coupling, the same work found theas shown in Figs. 17—19. These results show that the Hub-
pseudogap persists at finife even as the system size in- bard model has a nonzero charge gap, even at weak to inter-
creases. This behavior was interpreted as reflecting the faotediate coupling wher& is less than the bandwidth. We
that long-range antiferromagnetic correlations are preserdlso examined the dynamic spin susceptibilitypt shown

only at T=0, and that such long-range correlations wereand found the spin gap vanishes, as is reasonable since the
required for a gap ilN(w) for small U. This interpretation 2D Hubbard model has long-range magnetic ordef a0

was questioned, however, since one might expect thand hence ungapped, power law, spin wave excitations.

B. The optical conductivity
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V. CONCLUSIONS heat as due to ‘“charge” fluctuations and the low-

In this paper we have examined carefully the low- temperature peak as due to “spin” fluctuations while useful
temperature structure of the local moment and specific hedtt Strong coupling, needs to be refined. At weak coupling, the
of the two-dimensional Hubbard model. A striking conclu- Nigh-temperature peak comes from the kinetic energy while
sion of our work is that the two peak structure in the specificn€ low-temperature peak comes from the potential energy.
heat is preserved down 10=t=W/8, whereW=8t is the By comparing with the behavior of the density of states, we
bandwidth. In one dimension, the coalescence of the spin andVeé argued that the structure G(T) may be associated
charge peaks appears to occur at much latgeramely, the with pse_udogap formanon, th_at is, the onset of s_hort
one-dimensional bandwidth. Meanwhile. in infinite dimen-ange antiferromagnetic correlations between near-neighbor
sion, the peaks also come together at an interaction strengf!"S- , o
associated with an average kinetic energy per particle corre- A detailed understanding of the relationship of the energy
sponding to half the two-dimensional bandwidth. However and local moment formation is desirable in a number of con-
we have pointed out that the argument that the peaks corf€X!S in using model Hamiltonians to describe strongly cor-
together which is based on a comparison of the sca®éJ4 related materials. In particular, while minimization of the
and U might be flawed, as the weak coupling spin energyene_rgy determines the_dominant low-temperature phases, the
scale is instead set byexp(— 27 t/U). This leaves open various types of behavior of the local moméfur example,

the question of why the separation of the specific heat energ Icreenlng'dby g:ondutctlc;n (Ialectrons In ”.‘“'“tt’ﬁ”d m?d;ﬁ] ¢
scales is maximal in intermediate dimension. Possibly th SO provide important clues concerning the surtabiiity o

half-filled two-dimensional Hubbard model is unique due todifferent models in describing the low temperature physics

the unusual character of its noninteracting density of states zﬂf specific material$’
the Fermi energy.However, it should also be recalled that
the DMFT studies have been restricted to the paramagnetic
phase, which may have an important impact on the existence
of two well defined peaks. Finally the existence of the Na- Work at UCD was supported by the CNPg-Brazil, the
gaoka state in two dimensions, but not in one or infiniteLLNL Materials Research Institute, and NSF-DMR-
dimensions, indicates that there may be no reason to expe@685978; that at LLNL, by the U.S. Department of Energy
systematic behavior here as a function of dimenéfon. under Contract No. W-7405-Eng-48. We thank K. Held, M.

We have emphasized that the standard nomenclaturdarrell, M. Martins, P. Schlottmann, and M. Ulmke for useful
which identifies the high-temperature peak in the specifidiscussions.
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