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We investigate the disorder-driven superconductor to insulator quantum phase traf®ifipim an inter-
acting fermion model using determinantal quantum Monte Ca@MC) methods. The disordered supercon-
ductor is modeled by an attractive Hubbard model with site disorder chosen randomly from a uniform distri-
bution. The superconducting state which exists for small disorder is shown to evolve into an insulating phase
beyond a critical disorder. The transition is tracked by the vanishir(g)dhe superfluid stiffness, an@) the
charge stiffness or the delta function peak in the optical conductivity at zero frequency. We also show the
behavior of the charge, spin, pair, and current correlations in the presence of disorder. Results for the tem-
perature dependence of the dc conductivity, obtained by an approximate analytic continuation technique, are
also presented both in the metallic phase abByand the insulating phase. We discuss some of the compli-
cations in extracting the resistance at the transition pf82163-1829)00306-9

I. INTRODUCTION the way to the site-localized limit.
One might therefore ask whether a disorder-driven SIT

In a wide variety of two-dimensional disordered systéms, can occur at all. It is important to note that both the Ander-
from granular and homogeneously disordered Bi, Pb, and Sson and Ma-Lee arguments make specific assumptions con-
flms2™ to In;_,O, (Ref. 5 and MoGe film€ high- cerning the effect of randomness, and hence may not be
temperature superconducting filifsand Josephson-junction compelling in all cases. In order to understand why a SIT
arrays? a transition from a superconductor to an insulatormight be possible, consider the two generic mechanisms for
(SIT) can be driven by adjusting some tuning parameter suckhe destruction of superconductivity. First, the magnitude of
as the film thickness, the O concentration, the magnetic-fielthe pairing gap can be driven to zero. Second, phase coher-
strength, or the charging energy. The experimental signaturence between the pairs in different parts of the sample may
of the transition is that the behavior of the sheet resistancpe lost. Clearly there is an interplay between fluctuations in
Rn(T) as a function of temperatuikis different in the two  the pair amplitude and phase. For example, the phase can
phases. At low disorder or magnetic field, the system is suehange at a smaller energy cost in regions where the ampli-
perconducting fof <T.. The transition temperatufg, de-  tude is lower'? It is possible that the pair amplitude is driven
creases with increasing disorder or magnetic field and abovie zero at the same point where phase coherence is lost, but
T, the system is metallic witdR; /dT>0. Beyond a critical it is also possible that the two phenomena occur separately.
disorder or magnetic field, on the other hand, the system Fisher and collaboratorswere the first to describe a sce-
becomes insulating witd R+ /dT<0. nario in which phase fluctuations caused a SIT while the pair

Motivated by these experiments, one of the importantamplitude remained finite. They conjectured that the SIT
open theoretical questions is to study particular microscopienight be in the same universality class as the superfluid-
models to see whether or not they show a SIT as a functioinsulator transition for bosons. They argued that since near
of some tuning parameter such as the degree of disorder anghe transition the size of the Cooper pair is much smaller
if so, characterize the transition. than the diverging correlation length, it is possible to de-

Andersont® proposed that the superconducting transitionscribe it as a Bose field. Of course, the charge carriers of the
temperaturel; and the thermodynamic properties should beexperimental systems are fermionic in nature, so it is useful
unaffectedby disorder since Cooper pairs can be formed byto study Hamiltonians that do not begin immediately with
pairing the time-reversed exact eigenstates of the nonintetosonic degrees of freedom. Perturbative methods to study
acting disordered problem. This is only valid for small dis-the SIT in fermionic models have not been successful in
order in the regimekz|>1, wherekg is the Fermi momen- describing the transition regid;'®> which is not surprising
tum and| is the elastic mean free path. Ma and tee since the transition occurs in a region of high disorder in an
developed a mean-field theory in which they assumed thahteracting system.
the order parameter was uniform throughout the system. As a While this approach has led to a number of very interest-
consequence, the superfluid density remained large even farg results, especially for the value of the conductivity at the
fairly high disorder and was found to persist essentially alltransition'®~*°it is important to test the validity of the phase-
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only models by developing methods that also treat amplitudéliscuss the behavior of the frequency dependent current-
fluctuations. In order to better describe the behavior of aurrent correlation function and the extraction of the charge
superconductor at high disorder, Ghosal, Randeria, anstiffness or the strength of the delta-function peak in the
Trivedi?® have included the fluctuations of the superconduct-optical conductivity. Our results show that in the supercon-
ing order parameter by solving the ‘“Bogoliubov—de ducting phase the superfluid stiffness and the charge stiffness
Gennes” mean-field equations self-consistently. They havare roughly equal in magnitude for all disorder strengths. In
found that the probability distribution of the local pairing Sec. VIl we discuss an approximate method to extract the
amplitude develops a broad distribution with significanttemperature dependence of the dc resistivity and show its
weight near zero with increasing disorder. Surprisingly, thebehavior in the metallic phase aboVe for low disorder as
density of states continues to show a finite spectral gap, asell as in the insulating phase for higher disorder. The resis-
also seen by quantum Monte Carl@MC) and maximum tivity at the transition is extracted by two methodig.At the
entropy technique$; shown to arise from the breakup of the critical disorder, the charge stiffness vanishes with frequency
system into superconducting islands separated by regiongith a slope proportional to the resistivity; aid) from the
with very small pairing amplitude. These disorder-inducedcrossing of the resistivity vs disorder curves at various tem-
fluctuations in the order-parameter amplitude have a markeperatures. We also discuss the complications of obtaining the
effect in suppressing the superfluid density at higher disorderesistivity near a quantum critical point. We present our con-
but by themselves are not sufficient to drive the system nonelusions in Sec. IX and end with some of the outstanding
superconducting. It is necessary to include phase fluctuatiorguestions in the area of SIT in Sec. X. In previous
distributed inhomogeneously riding on top of the highly in- paper$®3®3lwe have presented a short discussion of some of
homogeneous amplitude fluctuations to get a SIT. these issues. The purpose of the present paper is to provide
In this paper we describe the first QMC study of a fer-the details behind that work, as well as to present a number
mion model of superconductivitythe attractive Hubbard of new results including a more complete discussion of both
Hamiltonian with random-site energjethat gives a SIT at a the physics and the numerics.
critical disorder strengt?? The attractive Hubbard Hamil-
tonian that we study is a simple model of a disordered su-
perconductor(SC) that allows us to explore the qualitative Ill. MODEL
issues arising from the interplay of superconductivity and  The Hamiltonian we study is defined by
localization. While such a model does not address questions
concerning the microscopic origin of the pairing, since the
attraction is put ina priori, one can nevertheless examine H=—tS (cle, +clcy,)
guestions such as the competition between superconductivity (no e e
and charge-density-wave formatiéhthe behavior of super-
conducting c4<3rzgelations above the superconducting transition _2 (M—Vi)nig—|U|z (np—5Hn -5, @
temperaturé: and the interpolation between weak- i i
coupling BCS and strong-coupling bosonic regimes of pair
formation?® Here the lattice sunfij) is over nearest-neighbor sites on a
two-dimensional square lattice;, is a fermion destruction
operator at sité with spine, n;,= ciT(,ci(,, and the chemi-
cal potentialx fixes the average density). The site ener-
This paper is organized as follows: In Sec. Il we intro- gies V; are independent random variables with a uniform
duce the attractive Hubbard model and briefly review thedistribution ovel —V/2V/2]. The interaction has been writ-
physics of the clean attractive Hubbard model. In Sec. IV wden in particle-hole symmetric form so that=0 corre-
describe the QMC simulation technique. In Sec. V we firstsponds tgn)=1 at allU andT whenV=0. We set=1 and
discuss our results for the chemical potential in order to demmeasure all energies in units bf
onstrate that we are in the degenerate Fermi regime of the In real materials, disorder plays a complicated role in the
model. We then describe the effect of disorder on the locaHamiltonian, both affecting the screening of the electron-
and longer range density-density and pairing correlationselectron interaction as well as the phonons and hence the
The pairing correlations are found to be much more robuselectron-phonon interaction. Our Hamiltonian does not in-
compared to the density correlations away from half filling. clude these effects.
We also show the behavior of the superconducting order pa- Some of the physics of the clean attractive Hubbard
rameter that decreases rapidly with increasing disorder anthodel may be summarized as follo#s®® At half filling
vanishes beyond a critical disorder. In Sec. VI we present 4«=0), the model has no long-range correlations at any
detailed discussion of the longitudinal and transversdinite temperature, and 8t=0 is in a state with combined
current-current correlation functions. The longitudinal re-charge density wavéCDW) and superconducting ord&.
sponse obeys thiesum rule and equals the absolute value ofWhen uw#0 the system has a finite-temperature Kosterlitz-
half the lattice kinetic energi, that we verify in our simu- Thouless transition to a state with superconducting order.
lations. The transverse response, on the other hand, deviat€be transition temperatufg, depends strongly on the filling
from K, and this deviation is a measure of the superfluidnear (n)=1. T, shows a nonmonotonic dependence on
stiffness of the system. We present results showing the sugoupling’® similar to the repulsive Hubbard model where the
pression of the superfluid stiffness with disorder and its ulti-Neel temperature first increases withbut then goes down
mate destruction beyond a critical disorder. In Sec. VIl weas TyxJ=4t?/U at strong coupling. Numerical

IIl. ORGANIZATION OF THE PAPER
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estimate®>® of T, are still a matter of considerable debate Thus the interacting problem is equivalent to solving a non-

and at(n)=0.875 vary from 0.8to 0.03. interacting problem for a given HS field configurati¢® ,}
and then summing over all possible configurations. The sum
IV. QUANTUM MONTE CARLO SIMULATION over the HS fields on the space-time lattice is efficiently

done using Monte Carlo techniques that generate the con-

Our simulation uses the standard “determinant” QMC figurations, treating the product of the determinants as a
algorithm?”*® along with its various refinement&* The  probability. Note that in general for a fermion problem, since
partition functionZ=Tr{e™#"] is written as a path integral the sign of the determinants may be negative, the product is
by discretizing the imaginary time dimensign=1/T intoN.  not necessarily non-negative and it cannot be treated as a
time slices as probability. This is the origin of the “sign problem” for
typical fermion problems. However, for the Hamiltonian in
Eqg. (1), since it is possible to couple the HS field to the
chargen;;+n;, and satisfy Eq(4) with real\, the two de-
terminants in Eq(6) areidentical and hence the integrand is
non-negative, thus there is no sign probférin attractive

e*,BH:(efATH)NT%(efATHlefATHU)NT, (2)

whereB=N_ A 7. In Eq.(2), H; is the sum of the two single-
particle terms in Eq(1) andHy is the interaction term. A
systematic Trotter error is introduced in EQ) because of ) . 7
the noncommutativity of the operatots; and Hy. This Hubbard model §|mulat|on8t any f||||ng. .
Trotter error, however, can be dealt with, either by making In the determinant QM_C approach, f|n|;e-temperature ex-
A 7 sufficiently small so that errors in observables are of thePectation values of <_:omb_|nat|or_ls of fermion operators W'th
same order as statistical fluctuations from the sampling, or, igrbltrary space and imaginary time arguments can be easily
greater accuracy is needed, by extrapolating\to=0. The gvalqated. More precisely, if all the operators are at the same
exponential of the interaction term is decoupled using dmaginary time, the obsgrvables can be expressed in terms of
Hubbard-StratonovicliHS) transformation by introducing a mfs\tnx elements of the inverse qf the matrices vvhose deter-
discrete field! S.=+1 at each point in the space-time lat- minants give the Boltzmann weight. These matrix elements
tice are needed to update the HS field, and are therefore available
' “free of charge” for the measurements. If the operators
exd +A7|U|(n;;—1/2)(n; — 1/2)] whose expectation values are to be measured have different
imaginary time arguments, some extra calculations are in-

1 —A7|U| volved to obtain the nonequal-time Green'’s functions. How-
— & 2 Sgﬂ exg AT S (nj;+ i — 1], ever, this can be done in a straightforward martér:*°

3
® V. EQUAL-TIME CORRELATIONS

where . .
A. Chemical potential
coshA 7)) =expA7|U|/2) 4 The location of the chemical potential relative to the bot-
. - - . . tom of the band gives information about the degeneracy of
is satisfied byreal N\. Thus the original functional integral the system. In the simulations presented in this paper the

over Grassman variables, which involved traces containin%IIin is chosen to bén)=0.875 close to the point whef
quartic operators is reduced to a quadratic problem in the g ' P -

. _ 35 .
fermion operatordut at the cost of performing a sum over Iosf?;:geC;(ra:n:ztgtresi?:;gglczgn_strg; gJIhFdoi;c?rogllé\:esr;r\éiluti
all configurations of the HS fields on the discretized spacev andptem eratur@—the chemical potentiak is tuned 20
time lattice The partition function in the grand canonical P P

. that upon disorder averaging the densfty)~0.875. We
ensemble is ; : .
comment that an alternative approach is to tune the chemical
Z=Trexp— BH} potential for each disorder realization separately so that each
has the same desired filling. This is likely to result in reduced
t fluctuations?? but is considerably more time consuming nu-
:% TrH ex _ATiEj Ciohig(1.0)Cio|- () merically. Some such approach, however, appears essential
' ' for analytic continuation calculatiorfs.
Hereh;g(7,0) is a one-body Hamiltonian for the motion of ~ The dependence gf onV is roughly linear and is shown
an electron in a given configuration of the HS fields. Note inin Fig. 1 for U= —4t. Sinceu, measured from the bottom
Eq. (3) both the up and down electrons couple to the HS fieldof the band and taking into account the Hartree shift, is

with the samesign. larger than the temperaturey(T,|U|,V)+4t+(n)|U|/2
Now the resulting trace over quadratic forms in the fer->T, the system is degenerate and far from the regime where
mion operators in Eq5) is performed and gives there are preformed bosons. Note, we have assumed that the

bottom of the band is at 4t, which is the case in the clean

_ system but should be renormalized by the random potential
Z_% detM;({Sp)detM, ({Sp) ©® i the disordered system.
with
B. Density-density correlations
M, ({Sh)=|1+]] e dhsro)|. @ In Fig. 2 we show the double occupangy;;n;|) that is

pe found to increase from 0.32 &t=0 to 0.38 atV=5. This
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FIG. 1. The chemical potentigk shows a roughly linear de-

crease with disordeV. Since u(T,|U[,V)+4t+(n)|U|/2~3.%
>T the system is in a highly degenerate regime and away from the
preformed bosonic regime.
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increase is a consequence of the fact that in the attractive
model, random-site energies and interactions both act to pro-

mote double occupancy, in contrast to the repulsive model L oV=0
where they compete. roV=1
In Figs. 3a) and 3b) we also show the spatial variation of r aV=5 ]
the density-density correlation function Y ST RN T R I
I [11] [10]
Co’,o’(l):<ni0'ni+|,o">_<ni0'><ni+|,o">' (8) (b) 4 32101 2 3 4
At half filling, C(l) is rapidly suppressed by disord@ryia FIG. 3. The density correlation functiod,, ,(1) from Eq. (8)

finite-size scaling it is seen that even as little disordelas for | along[10] and[11] directions for(a) (o,a')=(1,]) and(b)
=0.2% is capable of destroying the charge-density-wave or{o,o')=(7,1), showing rapid suppression with increasing disor-
dering and in an &8 systemC(l) is definitely suppressed der.
by V=1t. Away from half filling even for the clean system . . . :
C(I) is small and thereafter disorder does not have any fur-_o'.]l. for varying degrees of disorder. This temperature is
sufficiently low that for the clean system the correlation
ther effect. ; . . :
length has exceeded the linear lattice size and the system is
effectively in the ground state. For the clean system, or weak
disorder, the correlation function approaches a constant at
An important characteristic of the superconducting state isarge distances, implying a SC state with long-range order.
that the equal-times-wave pair-correlation functiof’g de-  For strong disorder, the correlation function vanishes at large

C. Pair correlations

fined by distances indicating the absence of an order parameter. It is
evident by comparison with Fig. 3 that pairing correlations
P(=(AAL), are much more robust than density-density correlations for
(99 the same degree of disorder, as in the half-filled ¢ase.
A.T: C.1L C.T
i iT™il e}
RS L L L L B LA L
has a finite value at large separatioRg[|=(L/2,L/2)] ©r
2 ; “ " - r U=—4
=Agp, WhereAqyp is the “order parameter” on a lattice of =01
finite sizelL. 2L ’
In Fig. 4 we show the behavior ¢ at a temperaturd ~©°r
e
< Tol 8
o T T o |-
Q
j ey
A, 3 i 8 lo=atl
<m b : . S (K
[ ]
v 3 ] 4 3210
o |
b o ® E FIG. 4. The pair-correlation function defined in Ef) is shown
- ] as a function of, the relative separation of the two sites al¢ag)]
0 : é E— s and[11] directions for varying disorder strengths=0, 1.0, 2.0,

V/t 4 3.0, 3.5, 4.0, and 5.0. The valuelatO is given by Eq(10) but is
not shown as it is off-scale. Note the relative robustness of the
FIG. 2. The increase in double occuparey;n; ) as a function  pairing correlations compared to the density correlations in Fig. 3 in
of increasing disordey/t. the presence of disorder.
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FIG. 5. Suppression of the superconducting “order parameter”
Aop On an 8x 8 lattice with increasing disorder. Whilk,p does T I(bl) |
not vanish at larg& due to finite-size effects, a scaling analysis of U=-4 V=

o
the pair structure factor indicates that in the thermodynamic limit o
Aop vanishes around a critical disordég~3.5. — |
i ]
. . x
Figure 5 shows the order parametesp as a function of & ; $ = .|

disorder that is strongly suppressed by disorder and vanishes

. : aT=0.50 T
beyond a critical disorder strength.~ 3.5. aT=0.17
The value of the pairing correlation function at zero sepa- L oT=0.10 |
ration is related to the occupancy and double occupancy, obleve Lo Lo 1.
0 1 2 3
q
Ps(0)=(A AT =1—(n)+(n;;n;). (10) x

. . ) FIG. 6. The longitudinal current-current correlation function
WhereasP (1) is reduced by disorder fdrnonzero,P(0) is A(Qy) defined in Eq.(12) as a function ofg, at T=0.5 (open

increased, since the density) is fixed and the double oc- rangles, 0.1% (open squarésand 0.1 (open circles The corre-

cupancy ratén;n;) is increasedFig. 2. ~ sponding filled points atj,=0 are the magnitude of the kinetic
The equal time pair and density correlations already givenergyk, alongx at those temperatures. [a) V=1t and in (b)

considerable insight into the effect of disorder on supercony=4t. In all cases\"= A,,(q,—0) approache., as required by

ductivity. The long-range pairing order in the ground state isyauge invariance.
suppressed to zero for disordér-4t, whenU = —4t. Off

half filling, the charge correlations are small and little af- A'-Enmq ~oMx(Ux,0y=0,0,=0),
fected by randomness, though disorder does cause an en- X
hancement of the double occupancy rate. However, consid-
erably more information can be obtained by looking also at

various imaginary time-dependent quantities such as thgs a consequence of gauge invariaht¥. Here K,

current-current correlation function. =<t20(c|1;< UC|,0+CIUC|+§<,U)) is the magnitude of the ki-

netic energy in the direction.
VI. CURRENT-CURRENT CORRELATION FUNCTION Figure 6 ShOWSAXX(qX) as a function Ohx for different
temperatures at weak disord€r= 1t [in ()] and at strong
disorder V=4t [in (b)]. In both cases one finds that"
=A, (05— 0)=K, at all T, verifying the gauge invariance
ondition and providing a nontrivial check of our numerics.

(12)
AL=K,,

As known for some timé2 and also described recently in
the context of quantum simulatioi$yarious limits of the
current—current correlation function give information about
the charge and superfluid stiffness, and gauge invariancé&
and in principle can be used to distinguish insulators, metals,

and superconductors. The current-current correlation func- B. Transverse response: Superfluid stiffness
tion Ay(l,7) is defined by The transverse response is given by
A1, 1) =(jx(1,7)jx(0,0)), " AT=limg oA u(ty=0gy 0, =0). (13)

In a system with a broken gauge symmetry, the longitu-
dinal and transverse responses are no longer equal and their
difference is precisely the superfluid stiffnedg or the re-
Upon Fourier transforming in space and imaginary time weated quantity, superfluid densipg, given by
get A(Q,wn)=3f5dre'd e oA (I,7), where o,
=2nm/pB. ps=Dg/m=[AL=AT]=[K,—AT]. (14)

i — aHrl T T - —H
jx(In=e"it> (¢ 5 o=l yCirie) €717
g

It can be seen from Ed14) that on a lattice the superfluid

density atT=0 is indeed bounded above by the kinetic en-
The longitudinal part ofA,, defined in Eq.(11) must ergy. In recent worl we have obtained an improved upper

satisfy thef-sum rule, bound onDy in a disordered system in terms of the local

A. Longitudinal response
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FIG. 9. The transverse current-current correlation functidn
= IimquoAxx(qy) as a function of disorder 8t=0.10. Also shown
is K,=A", the longitudinal response function, as a function of dis-
order. The difference betweext andAT is the superfluid stiffness
as seen from Eq.14).

so that the linear term in the expansion &f and A" is
absent and the lowest-order term is quadratigjn How-
ever, the momentum discretization on ak 8 lattice is too
coarse to see this quadratic behavior.

FIG. 7. The transverse current-current correlation function |t js clear from Fig. 7 that the transverse correlations be-

Axx(ay) defined in Eq.(13) as a function ofg, at T=0.5 (open
triangles, 0.1% (open squargsand 0.1 (open circles The corre-
sponding filled points af,=0 are the magnitude of the kinetic
energy along at those temperatures. For weak disoiderlt as in
(@), AT=A4(q,—0)<K, indicating the development of a finite
superfluid stiffnes® from Eq. (14) with decreasingl. For strong

disorderV=4t as in(b), Dg=0 at all T.

have quite differently from the longitudinal correlations. For
weak disorder, at high temperature! approache&,, but
asT is decreased, the two quantities no longer match, indi-
cating that a nonzero superfluid density is developing as
shown in Fig. 8. We see th& becomes significantly dif-
ferent from zero at temperaturds<0.2t. This is consistent
with estimate® that putT,~0.1t based on a finite-size scal-

kinetic energy that highlights the dominance of the weaking analysis of the pairing correlations, but seems to contra-

links in determining the superfluid stiffness.
In order to extract the superfluid stiffnegs; from Eg.
(14) we must extrapolaté,,(qy) to g,—0. Using general

symmetry arguments we have

ja(q):”&aﬁ(q)Aﬁ(q%

AD‘B:( 5(1[3_

«Q
o

qaqﬁ

0.4

FIG. 8. The superfluid stiffned3 andK, as a function off for
V=1.0,U=—4t, and(n)=0.875. Also shown is the charge stiff-
nessD at the lowes{T=0.1.

)AT(qZH%AL(q"‘),

dict recent suggestions that is much lower, approximately
0.03. In Fig. 8 we also show the behavior kf, that shows

no special features asis lowered.K, declines from 0.68 at
V=0 to 0.39 at V=5t, while D¢ changes by almost two
orders of magnitude. While a reduction in hopping is ex-
pected in the presence of disorder, the smooth behavior of
the kinetic energy emphasizes that such a local quantity can-
not serve as an order parameter for the localization transition.
When disorder is strong\ " remains pinned &, , for all T,
suggesting that a superconducting phase is not present.

Thus from the raw data itself there is compelling evidence
for a superconducting phase at low temperature and at low
disorder that is qualitatively distinct from the nonsupercon-
ducting phase at higher disorder.

Finally, we note that the mean-field gap is of the order of
the hopping integrat for U= —4t, therefore quasiparticle
excitations across the gap are suppressed by a factor
~exp(t/T)=exp(—10) at a temperatur€=0.1t. The finite
temperature transition is thus dominated largely by thermal
phase fluctuations.

C. Superconductor-insulator transition

In order to determine the location of the transition, we
now present data at a set of disorder values that sweeps
through the value¥=1-4 that we argued in the preceding
section brackets the transition. In Fig. 9 we show the ex-
trapolated values oA,,(q,) andK, as a function of disor-
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FIG. 12. The approximate localization length of the eigenstate at
the Fermi surface inferred from the participation ratio by as a func-
tion of disorder strengtl/. We see that the single-particle eigen-
states do not show any sharp behavior around the critical disorder
V.~3.25 found for the SIT in our QMC simulations of the inter-
acting problem.

pected to be larger than unity sinée zv and in two dimen-
sions it has been argued that2/d=1 andz=2. A value of
{>1 implies that the finite-size rounding will shift the criti-
cal point on the infinite lattice thighervalues compared to
the point whereD ¢ becomes small on finite lattices. So we
expect that the critical point for the SIT may lie arouvd
~3—-4t for U= —4t.

It is reasonable to ask to what extent the sharp drop in the
pair correlations and the transition to insulating behavior in
the resistivity might reflect changes in the noninteracting

FIG. 10. The superfluid stiffnesd, and the charge stiffned3 eigenstgtes of the Hamiltonian. Is the fact that the pairing
as a function of disorder strenghfor U= —3t andU=—4t. Note ~ COrrelations are robust at=0 but zero alV=>5t a conse-
the rapid suppression with disorder and the transition from a supeilduence of some changes in the extent of the single-particle
conductor to an insulator beyond a critical disorder. wave functions due to disorder?

In Fig. 11 we show the density of statBgE) for U=0

der. It is evident that the transition is driven by the variationand different amounts of randomness bracketfgg We see
of AT. In F|g 10 we ShO\NDS as a function of disorder that disorder broaderN(E), as expected, but the behavior

strength at fixed temperatufe=0.1t, for U=—3t andU  of this quantity throughV. is smooth.

= —4t. The decrease iD with increasing disorder is con- ~ We show in Fig. 12 the localization length or the “size”
sistent with the decline in the order parameter shown in Figof the eigenstate at the Fermi surface, defined gy
5 =\PR(Eg) as a function of disorder strengté,. shows a

The superfluid stiffnes®,~ 6%, where 6=|V—V,|/|V,]  smooth decrease as a function\gfwithout any sharp fea-
is the distance from critical disorder. The expongnis ex-  ture atV.. We conclude that the SIT is not occurring as a
consequence of & =0 Anderson transition on the finite
lattice, even though the wave functions are localized on the
scale of the linear lattice size. Instead, the transition is a
[ov=2 ] genuinely nontrivial many-body effect.

oV=3 @

N
O‘|||||||||||||

D. Coherence length

\;/ S In principle, we can extract the superconducting coher-
ence length¢ for the many-body problem from the depen-
dence ofAT(qy)=a+ bqf, for smallq,. From Eq.(14) we
see that

o d ;
—4 0 4 Ds(qy) Ds

_ _Sr1_Q~2
T_ 77[1 qygz]! (16)

FIG. 11. The density of statd$(E) as a function of energf whereg?=b/(D/). As a function of disorde¢ is found to
for noninteracting fermions{=0) on an 8x8 lattice at density decrease slightly for low disorder and is expected to diverge
(n)=0.875 for disorder strengths around=2t, 3t<V., andV as the critical disorder is approached. However, it is difficult
=4t>V,, whereV, is the critical disorder of the interacting prob- to deduce such a divergence from the data since bathd
lem with U= —4t. D are becoming small near the transition. Further work on
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the coherence length to track the quantum phase transition. U=—4 v=1
© H 0T=0.50 ]
VIl. CHARGE STIFFNESS . 2?8‘13
S < =u.
A superconductor is characterized by the Meissner effect, §/ o[ 3
measured by the superfluid stiffness, as well as by an infinite ~F &
conductivity. A signature of the latter is a delta function in or . 7]
the optical conductivity . % oz i
ol . T.%2 . 6.a8.8
Reo(w)=Dd(w)+Reoeq4(w) (17) (@) 0 2 | 4 6
with weight D=mn[Ky—Ilim,_, Re A,(q=0;w ©
+i07%)], known as the charge stiffness. The regular part of o Ueea vea
the conductivity is given bysuppressing thg=0 and omit-
ting the xx subscripts C 0T=0.17
. ImA(w) 8 T . 1=010
eTred @)= —— (18 =° S
vy L B & —;s
whereA(w+i0")=ReA(w)+iImA(w). © = s ]
In order to obtain the dc limit we proceed as follows. We o b L | ]
start with the sum rule 0 2 4 6
(b) n

f dw Reo(w)= zKX (19
0 2
and combine with Eq(17) to get
° D
fo dwRea'reg(w)IEKx— 7 (20
Next, using the spectral representation fofz),
A _jw do IMA (w) -
A @
and substituting=iw, we get
A 3 f wlmA (o) -
(wn = 2+w ( )
Using Eq.(18),
2 o0
A(wn)=;fo doReof w)
2 zfxd Reoef )
7 n 0 @ w’+ wﬁ
(23)

Substituting for the first term from E¢20) and defining the

Matsubara correlation function

D(wp)=

whence

D(w,)= D+2wf do

[ Ky—A(wn)],

24
reg( )
el P

The behavior ofA (w,) as a function ofiis shown in Fig.
13 for low disorderV=1t in (a) and for high disordev
=4t in (b). The behavior ofA (w,) is qualitatively similar to
Fig. 7. That is, at strong disordér(w,— 0)~K, at all tem-

FIG. 13. The behavior oA (w,) as a function oh at tempera-
turesT= 0.17 and 0.10. The corresponding filled pointaatO are
the values ofK, at those temperatures. For weak disordér
=t IimwnHOA(wn)<KX indicating a finite charge stiffnes®
whereas at strong disordér=4t, lim,, oA (wn)~K,, implying
thatD=0.

peratures and according to E@4) this implies the charge
stiffnessD~0, as is the superfluid stiffned3;. At weak
disorder and at lowl on the other handA (w,—0)<K,,
implying thatD is nonzero. In Fig. 14 we sho®(w,) as a
function of n that is found to increase monotonically with

2 IIIIIIIIIIIIIIIIIIIIAI
L V=1
L AAAA ]
R A 4
L A i
15 & g 0B84 V=2
N g o i
L O ]
A
= i 0o QOE v=3.25
& O O
3 1F 0 x4 V=4
a - O 7 x X
L o O x x J V=5
O_x xX
L ¥ ]
L O % X |
0.5 X —
| X ]
X -
ﬂ -
IIIIIIIIIIIIIIIIII_
2

4 6 8 10
n

FIG. 14. The behavior ob(w,) defined in Eq(24) as a func-
tion of n for T=0.1,U=—4t, and (n)=0.875 for disorder
strengthsV=1,2,3.25,4,6. The corresponding filled points ai,
=0 are the extrapolated values of the charge stiffizss thoseV.
The critical disorderV.=3.25 is identified by the vanishing of
D(w,). The straight line is a linear fit to the low, data whose
slope is proportional to the critical conductivity at the transition
from Eq. (29).
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from D(w,—0)=D to D(w,—x)=m(—K,) (not shown in
the figurg but verified in the data.

The behavior ofD as a function of disorder extracted
from Eq.(25) is shown in Fig. 10. We see thBtandDg are o |
within 10—20 % of each other for all the parameters shown. g o }
Thus there is remarkable consistency between the superfluid I
stiffnessDg and the strengtid of the delta function in the
optical conductivity, obtained from two very different corre-
lation functions. o e L L

Do these techniques give sensible results in the noninter- @ © 02 04,06 08
acting, clean limit? FoJ=V=0 we find the charge stiff-
nessD/7=0.79=(—K,) whereas the superfluid stiffness

Ds/m=0.0243 for filing (n)=0.86 andT=0.1t on an 8 St
X 8 system. Thus our numerics are correctly telling us that o E
free fermions are metallic with a nonzdbp but a very small <
D¢, which will go to zero as the system size increases. *2F
While the approximate equality & andDg in Fig. 10 for .

a superconductor is a good check on the calculation, it em-
phasizes that the charge stiffnd3sat T=0 cannot be used L
to characterize the nonsuperconducting stat&/faiV.. since 0

0

) : . L b
neither dirty metals nor insulators havedunction in o (w) (®)
at w=0. Hence we turn to the conductivity. Q |
VIIl. CONDUCTIVITY °
oFf ]
The dc conductivityogc=lim,, .oRedeq(w) defined in £
Eq. (18) is of considerable theoretical and experimental in- s
terest as it distinguishes the two nonsuperconducting - 7]
phases—metalabove T.) vs insulator. The fluctuation-
dissipation theorem relates Infw) that is required for the ol T ]
calculation ofoy. to A(7) that is obtained from QMC data 0 02 04 06 08
by (c) T
todw  exp—w7) FIG. 15. The behavior of the resistivity obtained from Eq.
A(7)= — —— ImA 2 i i [ : i
(7) fﬁm 7 [I=exp—Bo)] (w), (26) (27) as a function ofT for various disorder strengths. These figures

correspond tdJ = —3,—4,— 6, respectively.
valid for O< r=< 8. However, the evaluation of Ith(w) re-
guires an analytic continuation of noisy imaginary time data
which is difficult. We derive below an approximate expres-
sion for o4, %% analogous to that introduced previously for
the susceptibility’* by noting that if one sets= /2, the
kernel in Eq.(26) cuts off contributions from high frequen-
cies, and the important range ef is restricted to increas-
ingly small values a3 becomes large. Therefore, at low
enough temperatures one might replace

ImA(w)=woy. over the entire range of integration,
which leads to the result

T decreases. On the other hand, for strong disorder, the be-
havior is insulating ang increases a¥ decreases. Our plots
are qualitatively similar to those observed experimentally,
though the experimental range of resistivities is much
greater.

As is often done experimentally, data fofT) at different
V can be replotted to show(V) for different temperatures.
ForV <V, the resistivity decreases &ss lowered, while for
V>V, the resistivity increases asis lowered. This leads to
a characteristic crossing pattern gfV) that allows for an
estimation of the critical amount of disordég as well as the

B?A(7=pI2) critical resistance(V,.) at the transition. Note that the cross-
= . 27 ing pattern does not follow from any deep scaling principle.

Instead, it is merely a consequence of the monotonicity of

Note that Eq.(27) is only valid in the normal stateT¢  the plots ofp(T) for a givenV, which, to within error bars,
~0.1t) where ImA (w)~ woy at low frequencies. We will  either steadily increase or decreaselds changed.
present a number of self-consistent checks of (@) in the From Fig. 10 and Fig. 16 we see clear evidence for a SIT
metallic state abové@ of the superconductor and the local- at a critical disorderV,(U) whose dependence on the
ized phase. We defer a discussion of the extraction of thetrength of the attraction is shown in Fig. 17.
conductivity at the SIT to the next section. It has recently been emphasized by SacAd#wat using

If Fig. 15 we show the behavior of the resistivily Eq. (27) to extract the resistivity is not applicable near a
=1/o 4, obtained from Eq(27) as a function of temperature. quantum phase transition as theraésscale in the problem
The resistivity shows a behavior qualitatively similar to thatNote that it was assumed in the derivation of E2j7) that
seen in experiment: when the control parameter, in this caseelow some scale that was independent,at was possible
disorder, is weak, the behavior is metallic gndecreases as to assume that I\ (w)~woy.. This assumption breaks

o
dc T
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© 7T

Insulator

| T |

Super—
conductor

Py G R
0 5 10

|Vl

FIG. 17. The locus of critical disordér (U) for intermediate
couplings in the disordev—attractionfU| plane. TheV, values are
obtained by two independent methods, the vanishing of superfluid
densityD (open circleg and the crossing of the resistivipy(open
squares The filled circle atU=V=0 emphasizes that all noninter-
acting states are localized for any nonzero disokdir two dimen-
sions.

oob<
— =
0

0000
NWo o
OUNO

U=—4 | which in the limit of small Matsubara frequencies is given by

D(wn):770'0|wn|+0(wn)2- (29

The conductivity at the critical point obtained from Eg.
o (29 and from the crossing of the resistivity curves described
M

above are in agreement to about 10%.
Near a quantum critical point, we expect
o[ ] —\ ) —
o ™ : Treg(@, T,V=V)=0q0(lT). (30
> From Eq.(25), this implies that
(@2 IR -
- D(wy) DM, (=, fx
= —+ —
T T t8mn UQfxchx2+47r2n2
o L .
0 6 =G(T)+F(n), (3D

(c)
wherex=w/T. ThusD(w,)/T is a sum of two terms; the
FIG. 16. The behavior of the resistivity obtained from Eg. first one G(T)=D(T)/T is only a function of T and the
(27) as a function ofV for various temperatures. These figures second termF(n) is only a function ofn, with F(n—0)
correspond tdJ = —3,—4,— 6, respectively. =0. We setv=V_~3.25 and by extrapolating the behavior

down near a quantum critical point since by definition all®f P(@n)/T to n—0 obtainG(T). In Fig. 18, we show the

scales become soft. Away from the transition, Ety) gives ~ Pehavior of F(n) vs n=w,/27T at the critical point for
a good description op4«(T); however, close to the transi- Various temperatures. The data are not found to scale, unlike

tion, it cannot be used to extract the critical conductivity. OUr €xpectations at a critical point. Instead if we [itw;)
The agreement of the transition point obtained by the conVYS @n We see a remarkable scaling behavior of the data for
ductivity crossing plots and the measurements of the super-

fluid and charge stiffness suggest that E2i7) has a useful A \',:'Vc' Y ; '
range of validity. = |oT=067 "
We discuss another potential method to extract the con- { _ﬂ:g:gg %
ductivity at the critical point. As seen in Fig. 14 at a critical 3 | ¢T=0.25
disorderD vanishes. At this disorder assume thatdge) S 0 |FT=010 » 4
—ag=const, for frequencieea<w,., a cutoff value. i ! * o Y 0
Then from Eq.(25) =L N ° 4
= Oped 0) 3;: I 5 g o o o o
re ~— o
D(wn)zzwﬁfodwwz_,_wﬁ Do .5.?.?.?.?.“
0 2 n 4 6
[ @c , [*, Reo(w)
=200|wgltan™7| —= +2wnf do——7, FIG. 18. The behavior oF (n)=D(w,,T)/T—D(w,—0T)/T
n o¢ ot w,

as a function on=w,/(27T) defined in Eq.(31) at the critical
(28 disorderV.~3.25 and variousT.
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1.5

X. OUTSTANDING QUESTIONS

LI B e e
PN Yo viemad

Having established the existence of the SIT the outstand-
] ing questions now relate to obtaining a quantitative charac-
] terization of the transition. For this it is necessary to perform
finite-size scaling in both the spatidl {>°) and the tempo-
] ral (T—0) dimensions to obtain the location of the critical
. disorder from the vanishing of the superfluid stiffn&sas
] well as the vanishing of the charge stiffneBs From the
scaling of the data it is then possible to extract the dynamical

D(w,.T)

P U BN I P P exponentz and the correlation length exponent Such an
0 5 10 15 20 25 analysis will tell us whether the fermion SIT is in the same
w,=27nT universality class as the bosonic superfluid-insulator transi-

. . tion or not. While there have been several studies of the
_FIG. 19. The behavior ob(w,,T) as a function ofw, at the  syperfluid-insulator transitid®*® in the boson Hubbard
critical disorderV.~3.2% and variousT. modef®°%8and its variantd! we believe that the situation
) o ) with regard to the value of the exponents is still uncfar.
various temperatures as seen in Fig. 19. Itis not really cleafhjs is largely because of the complications of finite-size
as to why the data when plotted as in Fig. 18 do not scale.sca|ing analysis inherent in a quantum phase transition that
It has been claimed in Ref. 46 that since in QMC thepgcessarily involves two variablesystem sizel — and
lowest frequency that can be accesse@dis2#T>T, itis temperaturel — 0).
not possible to extract the dc resistivity using E2Q) in the Once the location and exponents characterizing the tran-
low-frequency limit. While this objection appears very sjtion are determined, the key question is the value of the
sound, it is nevertheless the case that the conductivity inregistivity at the transition and the possibility of its univer-
ferred from Eq.(29), including its values in the vicinity of sajity. There is some experimental evidence that despite the
the critical point, is consistent with many other, completelyige range of materials and control parameters, the value of
rigorously founded, aspects of our simulation. By this weihe resistance right at the transiti® is always quite close
mean that the location of the transition inferred from theiq the “universal” valu€354R~=h/4e2. While there is still
analysis of the data using EQY) is in remarkable agree- some debate concerning whether this number is truly the
ment with the location obtained from the superfluid stiffnessgame for all systems, it is certainly clear that the variation in
Ds, and the charge stiffnegs Furthermore, the value of the R« js much less than the variations in the location of the
conductivity at the transition is consistent with the value ob-ansition in other control parameters such as the tempera-
tained from Eq(27). At present we do not understand fully ;e magnetic field strength, or film thickness. Recent ex-

why the method appears to be so consistent with our oth&feriments of Yazdani and Kapitulfikhave interpreted the

data despite the objections raised in Ref. 46. variation inR* that exists in terms of separate bosonic and
fermionic contributions to the resistivity. Thus, calculations
IX. CONCLUSIONS with models that include electronic degrees of freedom like

the attractive Hubbard Hamiltonian are needed to supple-
ment work on bosonic theories. To address this set of issues
concerningR*, we require an exact method to calculate the
S‘resistivity at the transition, as would be provided by maxi-
fnum entropy techniques. We are currently working on this
problem.

We have studied the effect of disorder on awave su-

perconductor of fixed coupling strengtmodeled as an at-
tractive Hubbard model away from half fillingWe have
found that with increasing disorder, the superfluid stiffnes
(obtained from the transverse current-current correlatio
function and the charge stiffnesgobtained from the
7-dependent current-current correlation funcfioranish at a
critical disorder, signaling a transition to a localized phase.
The importance of our work lies in the fact that the SIT that We would like to thank M. Randeria and S. Sachdev for
has been observed experimentally, has eluded all mean-fieldany useful discussions. We also thank K. Runge for pro-
treatments of the problem. Ours is the first theoretical studyiding useful scripts for doing the disorder averaging. The
of a fermionic model to obtain &ansition between the su- numerical calculations were performed at the NCSA. This
perconductor and localized phases upon increasing the disorork was supported by the NSF under Grant No. DMR95-
der strength. 28535(R.T.S).
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