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Quantum Monte Carlo study of the disordered attractive Hubbard model
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We investigate the disorder-driven superconductor to insulator quantum phase transition~SIT! in an inter-
acting fermionmodel using determinantal quantum Monte Carlo~QMC! methods. The disordered supercon-
ductor is modeled by an attractive Hubbard model with site disorder chosen randomly from a uniform distri-
bution. The superconducting state which exists for small disorder is shown to evolve into an insulating phase
beyond a critical disorder. The transition is tracked by the vanishing of~a! the superfluid stiffness, and~b! the
charge stiffness or the delta function peak in the optical conductivity at zero frequency. We also show the
behavior of the charge, spin, pair, and current correlations in the presence of disorder. Results for the tem-
perature dependence of the dc conductivity, obtained by an approximate analytic continuation technique, are
also presented both in the metallic phase aboveTc and the insulating phase. We discuss some of the compli-
cations in extracting the resistance at the transition point.@S0163-1829~99!00306-9#
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I. INTRODUCTION

In a wide variety of two-dimensional disordered system1

from granular and homogeneously disordered Bi, Pb, and
films,2–4 to In12xOx ~Ref. 5! and MoGe films,6 high-
temperature superconducting films7,8 and Josephson-junctio
arrays,9 a transition from a superconductor to an insula
~SIT! can be driven by adjusting some tuning parameter s
as the film thickness, the O concentration, the magnetic-fi
strength, or the charging energy. The experimental signa
of the transition is that the behavior of the sheet resista
Rh(T) as a function of temperatureT is different in the two
phases. At low disorder or magnetic field, the system is
perconducting forT,Tc . The transition temperatureTc de-
creases with increasing disorder or magnetic field and ab
Tc the system is metallic withdRh /dT.0. Beyond a critical
disorder or magnetic field, on the other hand, the sys
becomes insulating withdRh /dT,0.

Motivated by these experiments, one of the import
open theoretical questions is to study particular microsco
models to see whether or not they show a SIT as a func
of some tuning parameter such as the degree of disorder
if so, characterize the transition.

Anderson10 proposed that the superconducting transit
temperatureTc and the thermodynamic properties should
unaffectedby disorder since Cooper pairs can be formed
pairing the time-reversed exact eigenstates of the nonin
acting disordered problem. This is only valid for small d
order in the regimekFl @1, wherekF is the Fermi momen-
tum and l is the elastic mean free path. Ma and Lee11

developed a mean-field theory in which they assumed
the order parameter was uniform throughout the system. A
consequence, the superfluid density remained large eve
fairly high disorder and was found to persist essentially
PRB 590163-1829/99/59~6!/4364~12!/$15.00
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the way to the site-localized limit.
One might therefore ask whether a disorder-driven S

can occur at all. It is important to note that both the And
son and Ma-Lee arguments make specific assumptions
cerning the effect of randomness, and hence may not
compelling in all cases. In order to understand why a S
might be possible, consider the two generic mechanisms
the destruction of superconductivity. First, the magnitude
the pairing gap can be driven to zero. Second, phase co
ence between the pairs in different parts of the sample m
be lost. Clearly there is an interplay between fluctuations
the pair amplitude and phase. For example, the phase
change at a smaller energy cost in regions where the am
tude is lower.12 It is possible that the pair amplitude is drive
to zero at the same point where phase coherence is lost
it is also possible that the two phenomena occur separat

Fisher and collaborators13 were the first to describe a sce
nario in which phase fluctuations caused a SIT while the p
amplitude remained finite. They conjectured that the S
might be in the same universality class as the superflu
insulator transition for bosons. They argued that since n
the transition the size of the Cooper pair is much sma
than the diverging correlation length, it is possible to d
scribe it as a Bose field. Of course, the charge carriers of
experimental systems are fermionic in nature, so it is use
to study Hamiltonians that do not begin immediately w
bosonic degrees of freedom. Perturbative methods to s
the SIT in fermionic models have not been successful
describing the transition region,14,15 which is not surprising
since the transition occurs in a region of high disorder in
interacting system.

While this approach has led to a number of very intere
ing results, especially for the value of the conductivity at t
transition,16–19it is important to test the validity of the phase
4364 ©1999 The American Physical Society
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only models by developing methods that also treat amplit
fluctuations. In order to better describe the behavior o
superconductor at high disorder, Ghosal, Randeria,
Trivedi20 have included the fluctuations of the supercondu
ing order parameter by solving the ‘‘Bogoliubov–d
Gennes’’ mean-field equations self-consistently. They h
found that the probability distribution of the local pairin
amplitude develops a broad distribution with significa
weight near zero with increasing disorder. Surprisingly,
density of states continues to show a finite spectral gap
also seen by quantum Monte Carlo~QMC! and maximum
entropy techniques,21 shown to arise from the breakup of th
system into superconducting islands separated by reg
with very small pairing amplitude. These disorder-induc
fluctuations in the order-parameter amplitude have a mar
effect in suppressing the superfluid density at higher diso
but by themselves are not sufficient to drive the system n
superconducting. It is necessary to include phase fluctuat
distributed inhomogeneously riding on top of the highly i
homogeneous amplitude fluctuations to get a SIT.

In this paper we describe the first QMC study of a fe
mion model of superconductivity~the attractive Hubbard
Hamiltonian with random-site energies! that gives a SIT at a
critical disorder strength.22 The attractive Hubbard Hamil
tonian that we study is a simple model of a disordered
perconductor~SC! that allows us to explore the qualitativ
issues arising from the interplay of superconductivity a
localization. While such a model does not address quest
concerning the microscopic origin of the pairing, since t
attraction is put ina priori, one can nevertheless examin
questions such as the competition between superconduc
and charge-density-wave formation,23 the behavior of super
conducting correlations above the superconducting trans
temperature,24–28 and the interpolation between wea
coupling BCS and strong-coupling bosonic regimes of p
formation.29

II. ORGANIZATION OF THE PAPER

This paper is organized as follows: In Sec. III we intr
duce the attractive Hubbard model and briefly review
physics of the clean attractive Hubbard model. In Sec. IV
describe the QMC simulation technique. In Sec. V we fi
discuss our results for the chemical potential in order to de
onstrate that we are in the degenerate Fermi regime of
model. We then describe the effect of disorder on the lo
and longer range density-density and pairing correlatio
The pairing correlations are found to be much more rob
compared to the density correlations away from half fillin
We also show the behavior of the superconducting order
rameter that decreases rapidly with increasing disorder
vanishes beyond a critical disorder. In Sec. VI we prese
detailed discussion of the longitudinal and transve
current-current correlation functions. The longitudinal r
sponse obeys thef-sum rule and equals the absolute value
half the lattice kinetic energyKx that we verify in our simu-
lations. The transverse response, on the other hand, dev
from Kx and this deviation is a measure of the superfl
stiffness of the system. We present results showing the
pression of the superfluid stiffness with disorder and its u
mate destruction beyond a critical disorder. In Sec. VII
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discuss the behavior of the frequency dependent curr
current correlation function and the extraction of the cha
stiffness or the strength of the delta-function peak in
optical conductivity. Our results show that in the superco
ducting phase the superfluid stiffness and the charge stiffn
are roughly equal in magnitude for all disorder strengths.
Sec. VIII we discuss an approximate method to extract
temperature dependence of the dc resistivity and show
behavior in the metallic phase aboveTc for low disorder as
well as in the insulating phase for higher disorder. The re
tivity at the transition is extracted by two methods.~i! At the
critical disorder, the charge stiffness vanishes with freque
with a slope proportional to the resistivity; and~ii ! from the
crossing of the resistivity vs disorder curves at various te
peratures. We also discuss the complications of obtaining
resistivity near a quantum critical point. We present our co
clusions in Sec. IX and end with some of the outstand
questions in the area of SIT in Sec. X. In previo
papers22,30,31we have presented a short discussion of some
these issues. The purpose of the present paper is to pro
the details behind that work, as well as to present a num
of new results including a more complete discussion of b
the physics and the numerics.

III. MODEL

The Hamiltonian we study is defined by

H52t (
^ ij &s

~cis
† cjs1cjs

† cis!

2(
is

~m2Vi!nis2uUu(
i

~ni↑2
1
2 !~ni↓2

1
2 !. ~1!

Here the lattice sum̂ij & is over nearest-neighbor sites on
two-dimensional square lattice,cis is a fermion destruction
operator at sitei with spins, nis5cis

† cis , and the chemi-
cal potentialm fixes the average density^n&. The site ener-
gies Vi are independent random variables with a unifo
distribution over@2V/2,V/2#. The interaction has been writ
ten in particle-hole symmetric form so thatm50 corre-
sponds tô n&51 at allU andT whenV50. We sett51 and
measure all energies in units oft.

In real materials, disorder plays a complicated role in
Hamiltonian, both affecting the screening of the electro
electron interaction as well as the phonons and hence
electron-phonon interaction. Our Hamiltonian does not
clude these effects.

Some of the physics of the clean attractive Hubba
model may be summarized as follows:32,33 At half filling
(m50), the model has no long-range correlations at a
finite temperature, and atT50 is in a state with combined
charge density wave~CDW! and superconducting order.34

When mÞ0 the system has a finite-temperature Kosterli
Thouless transition to a state with superconducting ord
The transition temperatureTc depends strongly on the filling
near ^n&51. Tc shows a nonmonotonic dependence
coupling29 similar to the repulsive Hubbard model where t
Néel temperature first increases withU but then goes down
as TN}J54t2/U at strong coupling. Numerica
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4366 PRB 59R. T. SCALETTAR, N. TRIVEDI, AND C. HUSCROFT
estimates35,36 of Tc are still a matter of considerable deba
and at^n&50.875 vary from 0.3t to 0.03t.

IV. QUANTUM MONTE CARLO SIMULATION

Our simulation uses the standard ‘‘determinant’’ QM
algorithm,37,38 along with its various refinements.39,40 The
partition functionZ5Tr@e2bH# is written as a path integra
by discretizing the imaginary time dimensionb51/T into Nt
time slices as

e2bH5~e2DtH!Nt'~e2DtH1e2DtHU!Nt, ~2!

whereb5NtDt. In Eq.~2!, H1 is the sum of the two single
particle terms in Eq.~1! and HU is the interaction term. A
systematic Trotter error is introduced in Eq.~2! because of
the noncommutativity of the operatorsH1 and HU . This
Trotter error, however, can be dealt with, either by mak
Dt sufficiently small so that errors in observables are of
same order as statistical fluctuations from the sampling, o
greater accuracy is needed, by extrapolating toDt50. The
exponential of the interaction term is decoupled using
Hubbard-Stratonovich~HS! transformation by introducing a
discrete field41 Si t561 at each point in the space-time la
tice,

exp@1DtuUu~ni↑21/2!~ni↓21/2!#

5
1

2
expH 2DtuUu

4 J (
Si t561

exp@DtlSi t~ni↑1ni↓21!#,

~3!

where

cosh~Dtl!5exp~DtuUu/2! ~4!

is satisfied byreal l. Thus the original functional integra
over Grassman variables, which involved traces contain
quartic operators is reduced to a quadratic problem in
fermion operatorsbut at the cost of performing a sum ov
all configurations of the HS fields on the discretized spa
time lattice. The partition function in the grand canonic
ensemble is

Z5Tr exp$2bH%

5(
$S%

Tr)
t,s

expF2Dt(
i , j

cis
† h$S%~t,s!cj sG . ~5!

Hereh$S%(t,s) is a one-body Hamiltonian for the motion o
an electron in a given configuration of the HS fields. Note
Eq. ~3! both the up and down electrons couple to the HS fi
with the samesign.

Now the resulting trace over quadratic forms in the f
mion operators in Eq.~5! is performed and gives

Z5(
$S%

detM ↑~$S%!detM ↓~$S%! ~6!

with

Ms~$S%!5F I 1)
t

e2Dth$S%~t,s!G . ~7!
g
e
if

a

g
e

-

d

-

Thus the interacting problem is equivalent to solving a no
interacting problem for a given HS field configuration$Si t%
and then summing over all possible configurations. The s
over the HS fields on the space-time lattice is efficien
done using Monte Carlo techniques that generate the c
figurations, treating the product of the determinants a
probability. Note that in general for a fermion problem, sin
the sign of the determinants may be negative, the produc
not necessarily non-negative and it cannot be treated
probability. This is the origin of the ‘‘sign problem’’ for
typical fermion problems. However, for the Hamiltonian
Eq. ~1!, since it is possible to couple the HS field to th
chargeni↑1ni↓ and satisfy Eq.~4! with real l, the two de-
terminants in Eq.~6! areidentical, and hence the integrand i
non-negative, thus there is no sign problem41 in attractive
Hubbard model simulationsat any filling.

In the determinant QMC approach, finite-temperature
pectation values of combinations of fermion operators w
arbitrary space and imaginary time arguments can be ea
evaluated. More precisely, if all the operators are at the sa
imaginary time, the observables can be expressed in term
matrix elements of the inverse of the matrices whose de
minants give the Boltzmann weight. These matrix eleme
are needed to update the HS field, and are therefore avai
‘‘free of charge’’ for the measurements. If the operato
whose expectation values are to be measured have diffe
imaginary time arguments, some extra calculations are
volved to obtain the nonequal-time Green’s functions. Ho
ever, this can be done in a straightforward manner.37,39,40

V. EQUAL-TIME CORRELATIONS

A. Chemical potential

The location of the chemical potential relative to the b
tom of the band gives information about the degeneracy
the system. In the simulations presented in this paper
filling is chosen to bên&50.875 close to the point whereTc
is expected to be maximal forU524t.35 For a given value
of the parameters—interaction strengthU, disorder strength
V, and temperatureT—the chemical potentialm is tuned so
that upon disorder averaging the density^n&;0.875. We
comment that an alternative approach is to tune the chem
potential for each disorder realization separately so that e
has the same desired filling. This is likely to result in reduc
fluctuations,42 but is considerably more time consuming n
merically. Some such approach, however, appears esse
for analytic continuation calculations.21

The dependence ofm on V is roughly linear and is shown
in Fig. 1 for U524t. Sincem, measured from the bottom
of the band and taking into account the Hartree shift,
larger than the temperature,m(T,uUu,V)14t1^n&uUu/2
.T, the system is degenerate and far from the regime wh
there are preformed bosons. Note, we have assumed tha
bottom of the band is at24t, which is the case in the clea
system but should be renormalized by the random poten
in the disordered system.

B. Density-density correlations

In Fig. 2 we show the double occupancy^ni↑ni↓& that is
found to increase from 0.32 atV50 to 0.38 atV55. This
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increase is a consequence of the fact that in the attrac
model, random-site energies and interactions both act to
mote double occupancy, in contrast to the repulsive mo
where they compete.

In Figs. 3~a! and 3~b! we also show the spatial variation o
the density-density correlation function

Cs,s8~ l!5^nisni1 l,s8&2^nis&^ni1 l,s8&. ~8!

At half filling, C( l) is rapidly suppressed by disorder;23 via
finite-size scaling it is seen that even as little disorder aV
50.25t is capable of destroying the charge-density-wave
dering and in an 838 systemC( l) is definitely suppressed
by V51t. Away from half filling even for the clean system
C( l) is small and thereafter disorder does not have any
ther effect.

C. Pair correlations

An important characteristic of the superconducting stat
that the equal-times-wave pair-correlation functionPs de-
fined by

Ps~ l!5^D iD i1l
† &,

~9!
D i

†5ci↑
† ci↓

† ,

has a finite value at large separationsPs@ l5(L/2,L/2)#
5DOP

2 , whereDOP is the ‘‘order parameter’’ on a lattice o
finite sizeL.

In Fig. 4 we show the behavior ofPs at a temperatureT

FIG. 1. The chemical potentialm shows a roughly linear de
crease with disorderV. Since m(T,uUu,V)14t1^n&uUu/2;3.5t
@T the system is in a highly degenerate regime and away from
preformed bosonic regime.

FIG. 2. The increase in double occupancy^ni↑ni↓& as a function
of increasing disorderV/t.
ve
o-
el

r-

r-

is

50.1t for varying degrees of disorder. This temperature
sufficiently low that for the clean system the correlati
length has exceeded the linear lattice size and the syste
effectively in the ground state. For the clean system, or w
disorder, the correlation function approaches a constan
large distances, implying a SC state with long-range ord
For strong disorder, the correlation function vanishes at la
distances indicating the absence of an order parameter.
evident by comparison with Fig. 3 that pairing correlatio
are much more robust than density-density correlations
the same degree of disorder, as in the half-filled case.23

e

FIG. 3. The density correlation functionCs,s8( l) from Eq. ~8!
for l along @10# and @11# directions for~a! (s,s8)5(↑,↓) and ~b!
(s,s8)5(↑,↑), showing rapid suppression with increasing diso
der.

FIG. 4. The pair-correlation function defined in Eq.~9! is shown
as a function ofl, the relative separation of the two sites along@10#
and @11# directions for varying disorder strengthsV50, 1.0, 2.0,
3.0, 3.5, 4.0, and 5.0. The value atl50 is given by Eq.~10! but is
not shown as it is off-scale. Note the relative robustness of
pairing correlations compared to the density correlations in Fig.
the presence of disorder.
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Figure 5 shows the order parameterDOP as a function of
disorder that is strongly suppressed by disorder and vani
beyond a critical disorder strengthVc;3.5t.

The value of the pairing correlation function at zero se
ration is related to the occupancy and double occupancy

Ps~0!5^D iD i
†&512^n&1^ni↑ni↓&. ~10!

WhereasPs( l) is reduced by disorder forl nonzero,Ps(0) is
increased, since the density^n& is fixed and the double oc
cupancy ratêni↑ni↓& is increased~Fig. 2!.

The equal time pair and density correlations already g
considerable insight into the effect of disorder on superc
ductivity. The long-range pairing order in the ground state
suppressed to zero for disorderV;4t, whenU524t. Off
half filling, the charge correlations are small and little a
fected by randomness, though disorder does cause an
hancement of the double occupancy rate. However, con
erably more information can be obtained by looking also
various imaginary time-dependent quantities such as
current-current correlation function.

VI. CURRENT-CURRENT CORRELATION FUNCTION

As known for some time,43 and also described recently i
the context of quantum simulations,44 various limits of the
current–current correlation function give information abo
the charge and superfluid stiffness, and gauge invaria
and in principle can be used to distinguish insulators, met
and superconductors. The current-current correlation fu
tion Lxx( l,t) is defined by

Lxx~ l,t!5^ j x~ l,t! j x~0,0!&,
~11!

j x~ lt!5eHtF i t(
s

~cl1 x̂,s
†

cl,s2cl,s
† cl1 x̂,s!Ge2Ht.

Upon Fourier transforming in space and imaginary time
get Lxx(q,vn)5( l*0

bdteiq• le2 ivntLxx( l,t), where vn

52np/b.

A. Longitudinal response

The longitudinal part ofLxx defined in Eq.~11! must
satisfy thef-sum rule,

FIG. 5. Suppression of the superconducting ‘‘order paramet
DOP on an 838 lattice with increasing disorder. WhileDOP does
not vanish at largeV due to finite-size effects, a scaling analysis
the pair structure factor indicates that in the thermodynamic li
DOP vanishes around a critical disorderVc;3.5t.
es

-

e
-

s

en-
d-
t
e

t
e,
s,
c-

e

LL[ limqx→0Lxx~qx ,qy50,vn50!,

~12!
LL5Kx ,

as a consequence of gauge invariance.43,44 Here Kx

5^t(s(cl1 x̂,s
†

cl,s1cl,s
† cl1 x̂,s)& is the magnitude of the ki-

netic energy in thex direction.
Figure 6 showsLxx(qx) as a function ofqx for different

temperatures at weak disorderV51t @in ~a!# and at strong
disorder V54t @in ~b!#. In both cases one finds thatLL

[Lxx(qx→0)5Kx at all T, verifying the gauge invariance
condition and providing a nontrivial check of our numeric

B. Transverse response: Superfluid stiffness

The transverse response is given by

LT[ limqy→0Lxx~qx50,qy ,vn50!. ~13!

In a system with a broken gauge symmetry, the longi
dinal and transverse responses are no longer equal and
difference is precisely the superfluid stiffnessDs or the re-
lated quantity, superfluid densityrs , given by

rs5Ds /p5@LL2LT#5@Kx2LT#. ~14!

It can be seen from Eq.~14! that on a lattice the superfluid
density atT50 is indeed bounded above by the kinetic e
ergy. In recent work12 we have obtained an improved upp
bound onDs in a disordered system in terms of the loc

’’

it

FIG. 6. The longitudinal current-current correlation functio
Lxx(qx) defined in Eq.~12! as a function ofqx at T50.5t ~open
triangles!, 0.17t ~open squares!, and 0.1t ~open circles!. The corre-
sponding filled points atqx50 are the magnitude of the kineti
energyKx along x at those temperatures. In~a! V51t and in ~b!
V54t. In all casesLL5Lxx(qx→0) approachesKx as required by
gauge invariance.
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kinetic energy that highlights the dominance of the we
links in determining the superfluid stiffness.

In order to extract the superfluid stiffnessDs from Eq.
~14! we must extrapolateLxx(qy) to qy→0. Using general
symmetry arguments we have

j a~q!5Lab~q!Ab~q!,
~15!

Lab5S dab2
qaqb

q2 DLT~q2!1
qaqb

q2 LL~q2!,

FIG. 7. The transverse current-current correlation funct
Lxx(qy) defined in Eq.~13! as a function ofqy at T50.5t ~open
triangles!, 0.17t ~open squares!, and 0.1t ~open circles!. The corre-
sponding filled points atqy50 are the magnitude of the kineti
energy alongx at those temperatures. For weak disorderV51t as in
~a!, LT5Lxx(qy→0),Kx indicating the development of a finit
superfluid stiffnessDs from Eq. ~14! with decreasingT. For strong
disorderV54t as in ~b!, Ds50 at all T.

FIG. 8. The superfluid stiffnessDs andKx as a function ofT for
V51.0,U524t, and^n&50.875. Also shown is the charge stif
nessD at the lowestT50.1.
k

so that the linear term in the expansion ofLT and LL is
absent and the lowest-order term is quadratic inqy . How-
ever, the momentum discretization on an 838 lattice is too
coarse to see this quadratic behavior.

It is clear from Fig. 7 that the transverse correlations b
have quite differently from the longitudinal correlations. F
weak disorder, at high temperature,LT approachesKx , but
asT is decreased, the two quantities no longer match, in
cating that a nonzero superfluid density is developing
shown in Fig. 8. We see thatDs becomes significantly dif-
ferent from zero at temperaturesT,0.2t. This is consistent
with estimates35 that putTc'0.1t based on a finite-size sca
ing analysis of the pairing correlations, but seems to con
dict recent suggestions thatTc is much lower, approximately
0.03t. In Fig. 8 we also show the behavior ofKx that shows
no special features asT is lowered.Kx declines from 0.68 at
V50 to 0.39t at V55t, while Ds changes by almost two
orders of magnitude. While a reduction in hopping is e
pected in the presence of disorder, the smooth behavio
the kinetic energy emphasizes that such a local quantity c
not serve as an order parameter for the localization transit
When disorder is strong,LT remains pinned atKx , for all T,
suggesting that a superconducting phase is not present.

Thus from the raw data itself there is compelling eviden
for a superconducting phase at low temperature and at l
disorder that is qualitatively distinct from the nonsuperco
ducting phase at higher disorder.

Finally, we note that the mean-field gap is of the order
the hopping integralt for U524t, therefore quasiparticle
excitations across the gap are suppressed by a fa
;exp(2t/T)5exp(210) at a temperatureT50.1t. The finite
temperature transition is thus dominated largely by therm
phase fluctuations.

C. Superconductor-insulator transition

In order to determine the location of the transition, w
now present data at a set of disorder values that swe
through the valuesV51 –4 that we argued in the precedin
section brackets the transition. In Fig. 9 we show the
trapolated values ofLxx(qy) andKx as a function of disor-

n

FIG. 9. The transverse current-current correlation functionLT

5 limqy→0Lxx(qy) as a function of disorder atT50.10. Also shown
is Kx5LL, the longitudinal response function, as a function of d
order. The difference betweenLL andLT is the superfluid stiffness
as seen from Eq.~14!.
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der. It is evident that the transition is driven by the variati
of LT. In Fig. 10 we showDs as a function of disorde
strength at fixed temperatureT50.1t, for U523t and U
524t. The decrease inDs with increasing disorder is con
sistent with the decline in the order parameter shown in F
5.

The superfluid stiffnessDs;dz, whered5uV2Vcu/uVcu
is the distance from critical disorder. The exponentz is ex-

FIG. 10. The superfluid stiffnessDs and the charge stiffnessD
as a function of disorder strengthV for U523t andU524t. Note
the rapid suppression with disorder and the transition from a su
conductor to an insulator beyond a critical disorder.

FIG. 11. The density of statesN(E) as a function of energyE
for noninteracting fermions (U50) on an 838 lattice at density
^n&50.875 for disorder strengths aroundV52t, 3t,Vc , and V
54t.Vc , whereVc is the critical disorder of the interacting prob
lem with U524t.
.

pected to be larger than unity sincez5zn and in two dimen-
sions it has been argued thatn>2/d51 andz52. A value of
z.1 implies that the finite-size rounding will shift the crit
cal point on the infinite lattice tohigher values compared to
the point whereDs becomes small on finite lattices. So w
expect that the critical point for the SIT may lie aroundVc
'3 – 4t for U524t.

It is reasonable to ask to what extent the sharp drop in
pair correlations and the transition to insulating behavior
the resistivity might reflect changes in the noninteract
eigenstates of the Hamiltonian. Is the fact that the pair
correlations are robust atV50 but zero atV55t a conse-
quence of some changes in the extent of the single-par
wave functions due to disorder?

In Fig. 11 we show the density of statesN(E) for U50
and different amounts of randomness bracketingVc . We see
that disorder broadensN(E), as expected, but the behavio
of this quantity throughVc is smooth.

We show in Fig. 12 the localization length or the ‘‘size
of the eigenstate at the Fermi surface, defined byj loc

5APR(EF) as a function of disorder strength.j loc shows a
smooth decrease as a function ofV, without any sharp fea-
ture atVc . We conclude that the SIT is not occurring as
consequence of aU50 Anderson transition on the finite
lattice, even though the wave functions are localized on
scale of the linear lattice sizeL. Instead, the transition is a
genuinely nontrivial many-body effect.

D. Coherence length

In principle, we can extract the superconducting coh
ence lengthj for the many-body problem from the depe
dence ofLT(qy)5a1bqy

2 for small qy . From Eq.~14! we
see that

Ds~qy!

p
5

Ds

p
@12qy

2j2#, ~16!

wherej25b/(Ds /p). As a function of disorderj is found to
decrease slightly for low disorder and is expected to dive
as the critical disorder is approached. However, it is diffic
to deduce such a divergence from the data since bothb and
Ds are becoming small near the transition. Further work

r-

FIG. 12. The approximate localization length of the eigenstat
the Fermi surface inferred from the participation ratio by as a fu
tion of disorder strengthV. We see that the single-particle eige
states do not show any sharp behavior around the critical diso
Vc;3.25 found for the SIT in our QMC simulations of the inte
acting problem.
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this problem is required, since it would be useful to obta
the coherence length to track the quantum phase transit

VII. CHARGE STIFFNESS

A superconductor is characterized by the Meissner eff
measured by the superfluid stiffness, as well as by an infi
conductivity. A signature of the latter is a delta function
the optical conductivity

Res~v!5Dd~v!1Res reg~v! ~17!

with weight D5p@Kx2 limv→0 Re Lxx(q50;v
1 i01)#, known as the charge stiffness. The regular par
the conductivity is given by~suppressing theq50 and omit-
ting thexx subscripts!

Res reg~v!5
Im L~v!

v
, ~18!

whereL(v1 i01)5ReL(v)1 i Im L(v).
In order to obtain the dc limit we proceed as follows. W

start with the sum rule

E
0

`

dv Res~v!5
p

2
Kx ~19!

and combine with Eq.~17! to get

E
0

`

dvRes reg~v!5
p

2
Kx2

D

2
. ~20!

Next, using the spectral representation forL(z),

L~z!5E
2`

` dv

p

Im L ~v !

v2z
, ~21!

and substitutingz5 ivn we get

L~vn!5
2

pE0

`

dv
v Im L ~v !

v21vn
2 . ~22!

Using Eq.~18!,

L~vn!5
2

pE0

`

dvRes reg~v!

2
2

p
vn

2E
0

`

dv
Res reg~v!

v21vn
2 .

~23!

Substituting for the first term from Eq.~20! and defining the
Matsubara correlation function

D~vn!5p@Kx2L~vn!#, ~24!

whence

D~vn!5D12vn
2E

0

`

dv
s reg~v!

@v21vn
2#

. ~25!

The behavior ofL(vn) as a function ofn is shown in Fig.
13 for low disorderV51t in ~a! and for high disorderV
54t in ~b!. The behavior ofL(vn) is qualitatively similar to
Fig. 7. That is, at strong disorderL(vn→0)'Kx at all tem-
n.

t,
te

f

peratures and according to Eq.~24! this implies the charge
stiffnessD'0, as is the superfluid stiffnessDs . At weak
disorder and at lowT on the other hand,L(vn→0),Kx ,
implying thatD is nonzero. In Fig. 14 we showD(vn) as a
function of n that is found to increase monotonically withn

FIG. 13. The behavior ofL(vn) as a function ofn at tempera-
turesT5 0.17 and 0.10. The corresponding filled points atn50 are
the values ofKx at those temperatures. For weak disorderV
5t limvn→0L(vn),Kx indicating a finite charge stiffnessD
whereas at strong disorderV54t, limvn→0L(vn)'Kx , implying
that D50.

FIG. 14. The behavior ofD(vn) defined in Eq.~24! as a func-
tion of n for T50.1,U524t, and ^n&50.875 for disorder
strengthsV51,2,3.25,4,5t. The corresponding filled points atvn

50 are the extrapolated values of the charge stiffnessD at thoseV.
The critical disorderVc53.25 is identified by the vanishing o
D(vn). The straight line is a linear fit to the lowvn data whose
slope is proportional to the critical conductivity at the transiti
from Eq. ~29!.
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from D(vn→0)5D to D(vn→`)5p(2Kx) ~not shown in
the figure! but verified in the data.

The behavior ofD as a function of disorder extracte
from Eq.~25! is shown in Fig. 10. We see thatD andDs are
within 10–20 % of each other for all the parameters show
Thus there is remarkable consistency between the super
stiffnessDs and the strengthD of the delta function in the
optical conductivity, obtained from two very different corr
lation functions.

Do these techniques give sensible results in the nonin
acting, clean limit? ForU5V50 we find the charge stiff-
ness D/p50.795^2Kx& whereas the superfluid stiffnes
Ds /p50.0243 for filling ^n&50.86 andT50.1t on an 8
38 system. Thus our numerics are correctly telling us t
free fermions are metallic with a nonzeroD, but a very small
Ds , which will go to zero as the system size increases.

While the approximate equality ofD andDs in Fig. 10 for
a superconductor is a good check on the calculation, it
phasizes that the charge stiffnessD at T50 cannot be used
to characterize the nonsuperconducting state forV>Vc since
neither dirty metals nor insulators have ad function ins(v)
at v50. Hence we turn to the conductivity.

VIII. CONDUCTIVITY

The dc conductivitysdc5 limv→0Res reg(v) defined in
Eq. ~18! is of considerable theoretical and experimental
terest as it distinguishes the two nonsuperconduc
phases—metal~above Tc) vs insulator. The fluctuation
dissipation theorem relates ImL(v) that is required for the
calculation ofsdc to L(t) that is obtained from QMC data
by

L~t!5E
2`

1`dv

p

exp~2vt!

@12exp~2bv!#
Im L~v!, ~26!

valid for 0<t<b. However, the evaluation of ImL(v) re-
quires an analytic continuation of noisy imaginary time da
which is difficult. We derive below an approximate expre
sion for sdc ,22 analogous to that introduced previously f
the susceptibility,24 by noting that if one setst5b/2, the
kernel in Eq.~26! cuts off contributions from high frequen
cies, and the important range ofv is restricted to increas
ingly small values asb becomes large. Therefore, at lo
enough temperatures one might replace

Im L(v).vsdc over the entire range of integration
which leads to the result

sdc5
b2L~t5b/2!

p
. ~27!

Note that Eq.~27! is only valid in the normal state (Tc
'0.1t) where ImL(v);vsdc at low frequencies. We will
present a number of self-consistent checks of Eq.~27! in the
metallic state aboveTc of the superconductor and the loca
ized phase. We defer a discussion of the extraction of
conductivity at the SIT to the next section.

If Fig. 15 we show the behavior of the resistivityr
51/sdc obtained from Eq.~27! as a function of temperature
The resistivity shows a behavior qualitatively similar to th
seen in experiment: when the control parameter, in this c
disorder, is weak, the behavior is metallic andr decreases a
.
id

r-

t

-

-
g

,
-

e

t
se

T decreases. On the other hand, for strong disorder, the
havior is insulating andr increases asT decreases. Our plot
are qualitatively similar to those observed experimenta
though the experimental range of resistivities is mu
greater.

As is often done experimentally, data forr(T) at different
V can be replotted to showr(V) for different temperatures
For V,Vc the resistivity decreases asT is lowered, while for
V.Vc the resistivity increases asT is lowered. This leads to
a characteristic crossing pattern inr(V) that allows for an
estimation of the critical amount of disorderVc as well as the
critical resistancer(Vc) at the transition. Note that the cros
ing pattern does not follow from any deep scaling princip
Instead, it is merely a consequence of the monotonicity
the plots ofr(T) for a givenV, which, to within error bars,
either steadily increase or decrease asT is changed.

From Fig. 10 and Fig. 16 we see clear evidence for a S
at a critical disorderVc(U) whose dependence on th
strength of the attraction is shown in Fig. 17.

It has recently been emphasized by Sachdev45 that using
Eq. ~27! to extract the resistivity is not applicable near
quantum phase transition as there isno scale in the problem.
Note that it was assumed in the derivation of Eq.~27! that
below some scale that was independent ofT, it was possible
to assume that ImL(v);vsdc. This assumption break

FIG. 15. The behavior of the resistivityr obtained from Eq.
~27! as a function ofT for various disorder strengths. These figur
correspond toU523,24,26, respectively.
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down near a quantum critical point since by definition
scales become soft. Away from the transition, Eq.~27! gives
a good description ofrdc(T); however, close to the trans
tion, it cannot be used to extract the critical conductivi
The agreement of the transition point obtained by the c
ductivity crossing plots and the measurements of the su
fluid and charge stiffness suggest that Eq.~27! has a useful
range of validity.

We discuss another potential method to extract the c
ductivity at the critical point. As seen in Fig. 14 at a critic
disorderD vanishes. At this disorder assume that Res(v)
→s05const, for frequenciesv,vc , a cutoff value.

Then from Eq.~25!

D~vn!52vn
2E

0

`

dv
s reg~v!

v21vn
2

52s0uvnutan21S vc

vn
D12vn

2E
vc

`

dv
Res~v!

v21vn
2 ,

~28!

FIG. 16. The behavior of the resistivityr obtained from Eq.
~27! as a function ofV for various temperatures. These figur
correspond toU523,24,26, respectively.
l

.
-
r-

n-

which in the limit of small Matsubara frequencies is given

D~vn!5ps0uvnu1O~vn!2. ~29!

The conductivity at the critical point obtained from E
~29! and from the crossing of the resistivity curves describ
above are in agreement to about 10%.

Near a quantum critical point, we expect

s reg~v,T,V5Vc!5sQs~v/T!. ~30!

From Eq.~25!, this implies that

D~vn!

T
5

D~T!

T
18p2n2sQE

xc

`

dx
f ~x!

x214p2n2

[G~T!1F~n!, ~31!

wherex5v/T. Thus D(vn)/T is a sum of two terms; the
first one G(T)5D(T)/T is only a function ofT and the
second termF(n) is only a function ofn, with F(n→0)
50. We setV5Vc;3.25t and by extrapolating the behavio
of D(vn)/T to n→0 obtainG(T). In Fig. 18, we show the
behavior ofF(n) vs n5vn /2pT at the critical point for
various temperatures. The data are not found to scale, un
our expectations at a critical point. Instead if we plotD(vn)
vs vn we see a remarkable scaling behavior of the data

FIG. 17. The locus of critical disorderVc(U) for intermediate
couplings in the disorder-V–attraction-uUu plane. TheVc values are
obtained by two independent methods, the vanishing of superfl
densityDs ~open circles!, and the crossing of the resistivityr ~open
squares!. The filled circle atU5V50 emphasizes that all noninter
acting states are localized for any nonzero disorderV in two dimen-
sions.

FIG. 18. The behavior ofF(n)5D(vn ,T)/T2D(vn→0,T)/T
as a function ofn5vn /(2pT) defined in Eq.~31! at the critical
disorderVc;3.25t and variousT.
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various temperatures as seen in Fig. 19. It is not really c
as to why the data when plotted as in Fig. 18 do not sca

It has been claimed in Ref. 46 that since in QMC t
lowest frequency that can be accessed isv152pT.T, it is
not possible to extract the dc resistivity using Eq.~29! in the
low-frequency limit. While this objection appears ve
sound, it is nevertheless the case that the conductivity
ferred from Eq.~29!, including its values in the vicinity of
the critical point, is consistent with many other, complete
rigorously founded, aspects of our simulation. By this
mean that the location of the transition inferred from t
analysis of the data using Eq.~29! is in remarkable agree
ment with the location obtained from the superfluid stiffne
Ds , and the charge stiffnessD. Furthermore, the value of th
conductivity at the transition is consistent with the value o
tained from Eq.~27!. At present we do not understand ful
why the method appears to be so consistent with our o
data despite the objections raised in Ref. 46.

IX. CONCLUSIONS

We have studied the effect of disorder on ans-wave su-
perconductor of fixed coupling strength~modeled as an at
tractive Hubbard model away from half filling!. We have
found that with increasing disorder, the superfluid stiffne
~obtained from the transverse current-current correla
function! and the charge stiffness~obtained from the
t-dependent current-current correlation function!, vanish at a
critical disorder, signaling a transition to a localized pha
The importance of our work lies in the fact that the SIT th
has been observed experimentally, has eluded all mean-
treatments of the problem. Ours is the first theoretical st
of a fermionic model to obtain atransition between the su-
perconductor and localized phases upon increasing the d
der strength.

FIG. 19. The behavior ofD(vn ,T) as a function ofvn at the
critical disorderVc;3.25t and variousT.
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X. OUTSTANDING QUESTIONS

Having established the existence of the SIT the outsta
ing questions now relate to obtaining a quantitative char
terization of the transition. For this it is necessary to perfo
finite-size scaling in both the spatial (L→`) and the tempo-
ral (T→0) dimensions to obtain the location of the critic
disorder from the vanishing of the superfluid stiffnessDs as
well as the vanishing of the charge stiffnessD. From the
scaling of the data it is then possible to extract the dynam
exponentz and the correlation length exponentn. Such an
analysis will tell us whether the fermion SIT is in the sam
universality class as the bosonic superfluid-insulator tra
tion or not. While there have been several studies of
superfluid-insulator transition47,48 in the boson Hubbard
model49,50,18and its variants,17 we believe that the situation
with regard to the value of the exponents is still unclea51

This is largely because of the complications of finite-s
scaling analysis inherent in a quantum phase transition
necessarily involves two variables~system sizeL→` and
temperatureT→0).

Once the location and exponents characterizing the t
sition are determined, the key question is the value of
resistivity at the transition and the possibility of its unive
sality. There is some experimental evidence that despite
wide range of materials and control parameters, the valu
the resistance right at the transitionR* is always quite close
to the ‘‘universal’’ value2,3,5,4RQ5h/4e2. While there is still
some debate concerning whether this number is truly
same for all systems, it is certainly clear that the variation
R* is much less than the variations in the location of t
transition in other control parameters such as the temp
ture, magnetic field strength, or film thickness. Recent
periments of Yazdani and Kapitulnik6 have interpreted the
variation inR* that exists in terms of separate bosonic a
fermionic contributions to the resistivity. Thus, calculatio
with models that include electronic degrees of freedom l
the attractive Hubbard Hamiltonian are needed to sup
ment work on bosonic theories. To address this set of iss
concerningR* , we require an exact method to calculate t
resistivity at the transition, as would be provided by ma
mum entropy techniques. We are currently working on t
problem.
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