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Effect of disorder on charge-density wave and superconducting order
in the half-filled attractive Hubbard model

C. Huscroft and R. T. Scalettar
Physics Department, University of California, Davis, California 95616

~Received 5 June 1996!

The half-filled attractive Hubbard model exhibits a simultaneous charge-density wave and superconducting
order in its ground state. In this paper we use approximation-free quantum Monte Carlo techniques to explore
the effect of disorder in the site energies on this degeneracy. We find that superconducting order survives
randomness out to a critical amount of disorder, but charge ordering is immediately destroyed. This settles the
issue as to whether disordered site energies, which do not break time-reversal invariance, can destroy pairing
correlations. We also locate the precise ratio of disorder to bandwidth required for the disorder-driven transi-
tion from the superconducting state. We explore the validity of a strong-coupling picture which maps the
system onto a Heisenberg model in a random magnetic field.@S0163-1829~97!05701-9#
p
he
lit

o
fre
a
tu
of
a
i
-
-
o

e

a

th
ti
st
. A
d
th
o

so
re
tin
as
e
t
ite
ta
s-

te

our

re-

a-
is-
n-

ns-

y is

ence
be-
ns.
or-

h
n

i-
in
p-
will
I. INTRODUCTION

The repulsive Hubbard model has long served as a sim
Hamiltonian to describe itinerant magnetism. Similarly, t
attractive Hubbard model has been used to explore qua
tive features of the superconducting phase transition.1,2 This
model does not provide a microscopic model of the origin
pairing. Rather it is assumed that some other degrees of
dom, for example, an electron-phonon coupling, have
ready provided the necessary attraction. Recent quan
simulation studies3–8 have explored a number of features
the attractive Hubbard Hamiltonian, including a determin
tion of the superconducting transition temperature and
dependence on electron density,9 the detailed spatial struc
ture of the pairing correlations,10 the coexistence of a Bose
like spin gap with an otherwise degenerate Fermi gas
electrons,11 and deviations from Fermi-liquid behavior.12

Much analytic work has also been done, as reviewed in R
2.

While the interplay of superconductivity and disorder h
of course been extensively studied theoretically,13 consider-
ably less is known numerically. The competition between
dephasing effect of impurity scattering and the drama
manifestation of phase coherence in the zero-resistance
gives rise to a set of challenging qualitative questions
quantitative understanding is also essential in order to mo
experiments like those which address the question of
possibility of a universal resistance in disordered superc
ducting films.14

Much recent theoretical15,16 and numerical17–21 work on
these issues has been done within the context of the ‘‘bo
Hubbard’’ model; that is, under the assumption that p
formed Cooper pairs exist even in the nonsuperconduc
state, and that the transition is driven by the loss of ph
coherence, rather than the destruction of the magnitud
the superconducting gap. This bosonic model should be
limit of the attractive Hubbard Hamiltonian as the on-s
interactionU becomes large. Despite the greater compu
tional simplicity of the boson models, it is the fermion sy
tem which is of fundamental interest.
550163-1829/97/55~2!/1185~9!/$10.00
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In this paper we will explore the effect of random si
energies in the attractive Hubbard Hamiltonian

H52t (
^ i,j &s

~cis
† cjs1cjs

† cis!2uUu(
i

~ni↑2
1
2 !~ni↓2

1
2 !

1(
i

~e i2m!~ni↑1ni↓!. ~1!

Herecis (cis
† ) are operators which destroy~create! electrons

of spin s on site i, so the first term inH describes the
hopping of electrons between nearest-neighbor sites on
2d square lattice.uUu is the on-site attraction, whilem and
e i are the chemical potential and random site energies,
spectively.e i are chosen uniformly on@2V,1V#. In this
paper, we will work exclusively at half-filling,
^ni↑1ni↓&51. A related study of the current-current correl
tions and the behavior of the resistivity as a function of d
order strength and temperature away from half-filling is co
tained in Ref. 22.

In the absence of disorder,V50, considerable insight can
be gained by considering the effect of a particle-hole tra
formation on the down-electron operators,ci↑↔ci↑ ,
ci↓↔ci↓

† (21)i x1 i y. The phase factor (21)i x1 i y changes sign
as one goes between the two sublattices of our~bipartite!
square lattice. Under this transformation the kinetic energ
invariant, while the interaction changes sign,uUu↔2uUu.
The chemical potential now couples to thez component of
the spin on each site, instead of to the charge. In the abs
of a chemical potential term, we have an exact mapping
tween the attractive and repulsive Hubbard Hamiltonia
Pair correlations in the attractive model map onto spin c
relations in thexy plane of the repulsive model, while
charge-density-wave~cdw! correlations are associated wit
spin correlations in thez direction. Since the long-range spi
order in the ground state of the two-dimensional~2D! repul-
sive Hubbard model is rotationally invariant, we immed
ately conclude that pairing and cdw correlations coexist
the ground state of the half-filled attractive model. This ma
ping can also be used to discuss the effect of doping, as
be described in Sec. V.
1185 © 1997 The American Physical Society
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1186 55C. HUSCROFT AND R. T. SCALETTAR
In this paper we consider nonzero disorder,VÞ0. Our
basic conclusions are as follows:~i! The addition of site dis-
order breaks the degeneracy between superconducting
charge-density-wave states. Equal-time density-density
relations exhibit a rapid suppression of their staggered
tern, while pair-pair correlations remain robust.~ii ! Our data
are consistent with an immediate destruction of long-ra
charge order, while superconducting correlations appea
persist out to a finiteVc'1.5.~iii ! The behavior of supercon
ducting correlations atuUu54 are in approximate agreeme
with that of the appropriate magnetic correlations in a stro
coupling model.

An outline of the remainder of this paper is as follows:
Sec. II we give a brief description of the simulation and
the observables used to characterize the ground-state c
lations. In Sec. III we present results for local pair a
charge correlations. Section IV provides a finite-size sca
analysis of this data to determine the existence of long-ra
order. We also discuss in some detail the distribution of m
surements for different disorder realizations. Section V d
cusses results for the strong-coupling version of this mo
the antiferromagnetic Heisenberg model in a random m
netic field. A summary is presented in Sec. VI.

II. BRIEF DESCRIPTION OF THE SIMULATION

We will use the ‘‘determinant’’ Monte Carlo algorithm23

for our numerical work. In this approach the partition fun
tion is written down as a path integral by discretizing t
inverse temperature b, and using the Trotter
approximation24,25 to break up the exponential of the kinet
and potential pieces of the Hamiltonian. The interaction te
is decoupled with a discrete Hubbard-Stratonov
transformation.26 The resulting trace over the fermion oper
tors is over the exponential of quadratic forms, and so it
be done analytically. The result is an expression for the p
tition function which is the sum over all values of the di
crete Hubbard-Stratonovich field of a summand which is
product of two determinants, one each arising from
spin-up and spin-down degrees of freedom. Because both
random site energies and the auxiliary field couple to
charge, the two determinants are identical, and hence
product is positive. There is no fermion sign problem
these simulations, even away from half-filling.

The matricesMs , whose determinants give the weight
a particular auxiliary field configuration, are simply relat
to the equal time fermion Green function
Gi j[^cicj

†&5Mi j
21 . Observables are measured by expre

ing them~using Wick’s theorem! in terms of the appropriate
sums and products ofG. Of particular interest to us here ar
the equal-time charge and pair correlations,

c~ j2 l!5^~n↑ l1n↓ l21!~n↑ j1n↓ j21!&,
~2!

ps~ j2 l!5^D
l
D j
†&, D j

†5c↑ j
† c↓ j

† ,

and their associated structure factors

Scdw5
1

N(
j ,l

c~ j2 l!~21! u j2 lu, Spair5
1

N(
j ,l

ps~ j2 l!.

~3!
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It is useful to look at a few strong-coupling snapshots
possible real-space electron distributions to gain a preli
nary insight into these correlation functions and the effec
site disorder. Consider the strong-coupling limit, when
electrons in the system are paired. A typical low-energy s
then consists of a lattice with each site either empty or d
bly occupied. A configuration in which the doubly occupie
sites alternate with empty sites@Fig. 1~a!# has a lower energy
than one in which doubly occupied or empty sites are ad
cent by an amountDE}2t2/U to second order in the hop
ping t. ~In the language of the repulsive model onto whi
the attractive model maps via the particle-hole transform
tion discussed above, this energy lowering stabilizes anti
romagnetism over ferromagnetism at half-filling, and is p
portional to the exchange constantJ.! The charge density
and pair structure factors defined in Eq.~3! take on their
maximal values (N/4 for Spair andN for Scdw).

Now consider the effect of site disorder. This will not lea
to a breaking of the pairs, but, when the site energies exc
}t2/U, it will change the sites on which the pairs prefer
reside@Fig. 1~b!#. Note that the pair structure factor is sti
large for such a disordered configuration of pairs, since c
tributions to it depend only on finding doubly occupied sit
and empty sites somewhere in the lattice to which to h
However, the phases in the charge structure factor mak
extremely sensitive to the destruction of the original sta
gered pattern. This rough argument suggests that pair o
will be more robust to randomness in the site energy th
will charge ordering. Of course, on general grounds we a
expect a term in the Hamiltonian which couples directly
the charge to have the greatest effect on the associ
charge correlations. Indeed, as discussed by Anderso27

nonmagnetic impuritites are not expected to destroy su
conductivity, since one can still pair appropriate eigensta
of the single-particle Hamiltonian which includes the ra
domness. Even when the disorder is large enough to loca
these eigenstates, it has been suggested that supercond
ity survives.28

This overview captures the essence of how disorder
fects our system. In Sec. III, we will make this qualitativ
picture more precise.

III. LOCAL CORRELATIONS

We begin by showing some results for the disord
dependence of local quantities. The kinetic ener

FIG. 1. Two possible real-space configurations of the electr
on the lattice are shown. The pair structure factor attains its lar
valueN/4 for both, while the cdw structure factor is large only fo
~a!.
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55 1187EFFECT OF DISORDER ON CHARGE-DENSITY WAVE . . .
^k&52(t/N)(^ i,j &s(cis
† cjs1cjs

† cis) is shown in Fig. 2. As
we shall see below, superconductivity vanishes aro
Vc'1.5. The kinetic energy shows no special signal at t
transition. Of course a measure of local electron hopping
^k& does not have to vanish at an insulating pha
transition.29

In the repulsive Hubbard model, random site energ
have a fundamental qualitative effect on the double oc
pancy ratê nj↑nj↓&, since they compete with the repulsiv
interaction and disturb local moment formation. In the attr
tive model, we expect site disorder to have a much less
matic effect, and indeed that is seen to be the case in Fi

Longer range charge-charge correlations are dramatic

FIG. 2. The kinetic energy as a function of disorder strength

FIG. 3. The double occupancy rate as a function of disor
strength.
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affected by site disorder. Figure 4 showsc( j2 l) as a func-
tion of lattice separationj2 l for different disorder strengths
~Successive disorder strengths have been offset vertically
clarity.! The lattice size is 838, inverse temperature
b510, anduUu54. The oscillatory character of the charg
correlations is indicative of cdw ordering. AtV50 these
correlations extend over the entire lattice; that is, the co
lation lengthj exceeds the linear lattice dimension. Howev
asV is turned on the correlations go to zero.

Figure 5 shows the analogous plot for the pair-correlat
function ps( j2 l). The pair correlations remain unchange
for weakV, then are eventually suppressed for sufficien
large randomness. We see the robustness of the pair cor

r

FIG. 4. Charge correlations as a function of site separation
different disorder strengths. Successive disorder strengths
been offset vertically for clarity. The horizontal lines indicate t
c( j2 l)50 axis for each successive disorder strength.~The numbers
labeling the vertical axis correspond to theV50.00 case.!

FIG. 5. Pair correlations as a function of site separation
different disorder strengths.
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1188 55C. HUSCROFT AND R. T. SCALETTAR
tions as compared to charge-charge correlations in this p
which has a much greater range of disorder strengthsV,
than does Fig. 4.

The Fourier transforms of these real-space correla
functions are shown as a function of disorder in Fig. 6. T
degeneracy between charge and pair correlations is evi
in the absence of randomness,V50. As was seen in Figs. 4
and 5, nonzero site disorder more rapidly destroys
charge-density wave than the pair correlations.

IV. DESTRUCTION OF LONG-RANGE ORDER

To determine whether ground-state long-range order
ists in our system, we need to do a finite-size scaling an
sis. As has been discussed30,31 within the context of the re-
pulsive Hubbard model, spin-wave theory32 predicts that on
a 2D lattice of sizeN5L3L, the charge-structure factor an
correlation function at largest separation should behave

1

N
Scdw5m2/31a/L, c~L/2,L/2!5m2/31b/L ~4!

in the ordered phase. Similar results are valid for the p
correlations. Herem is the order parameter. Thus in the o
dered phase a plot of the scaled structure factor versusL
should be a straight line with a nonzero intercept givi
m2/3. We will always choose the inverse temperatureb suf-
ficiently large that we are effectively atT50 for our finite
lattices.

Figure 7 shows the result of this analysis for the cha
correlations. The interaction strength isuUu54. Only in the
clean system atV50 is a nonzero order parameterm ob-
tained. However, as seen in Fig. 8 the pair field order par
eter remains nonzero out to approximatelyV5Vc'1.5.33

We will conclude this section with a discussion of diso
der averaging, since while the other aspects of our simula
are identical to those long reported for determinant Mo
Carlo, little is known about what happens when randomn
is included. In Fig. 9 we show some histograms of the int

FIG. 6. Charge and pair structure factors as a function of dis
der strength.
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action and kinetic energies for an 838 spatial lattice at an
inverse temperatureb510. We have chosenuUu54 and
V51. We see that these quantities have a fairly sharp dis
bution, that is, the energy is not too sensitive to the deta
disorder realization; the widths of the distributions are le
than 5% of the average values. The error bars associated
realization to realization fluctuations in these quantities
roughly ten times the statistical uncertainties in a run c
sisting of 1000 warm-up sweeps and 5000 measurem
sweeps for a single realization.

r- FIG. 7. Finite-size scaling plots for the charge correlations:~a!
V50.0, ~b! V50.25, ~c! V50.50, and~d! V50.75. The straight
lines are least-squares fits to the data. Error bars~not shown! on the
V50.25 case are consistent with a zero intercept, while error b
on theV50.00 case are not consistent with a zero intercept. T
V50.00 ~clean case! error bars are much smaller than in the diso
dered V50.25 case, since there is no disorder averaging require
the clean case.

FIG. 8. Finite-size scaling plots for the pair correlations:~a!
V50.0, ~b! V50.50, ~c! V51.00, and~d! V51.50. The straight
lines are least-squares fits to the data.
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55 1189EFFECT OF DISORDER ON CHARGE-DENSITY WAVE . . .
On the other hand, the fluctuations in quantities wh
measure long-range correlations are, as expected, m
larger. In Fig. 10 we show histograms of the charge and
structure factors for an 838 spatial lattice at inverse tem
peratureb510, with uUu54 and V51. We see that the
widths of the peaks are of the same order of magnitude as
average values of the respective structure factors.

FIG. 9. Histogram of values of the~a! interaction and~b! kinetic
energies for different disorder realizations. Each plot repres
data from 100 disorder realizations. The average values are sh
by the vertical lines.

FIG. 10. Histogram of values of the~a! charge and~b! pair
structure factors for different disorder realizations. Each plot rep
sents data from 100 disorder realizations. The average value
shown by the vertical lines. The charge structure factor,Scdw, has
an apparently non-gaussian form.
h
ch
ir

he

We note that practical difficulties limit the number of di
order realizations, and consequently the reduction in fluct
tions due to disorder averaging, that one can attain. A sin
disorder realization for an 838 system atb510 takes over
1000 CPU minutes on a fast workstation. This computatio
difficulty of these quantum Monte Carlo calculations pr
cludes disorder averaging over thousands of realizations
has been done in the spin-glass literature. The non-Gaus
nature of the distributions@e.g., Fig. 10~a!# of course raises
difficult questions about how to do the averaging and how
estimate error bars correctly. However, if one goes ahead
employs the usual methods of obtaining error bars based
an assumption of a Gaussian distribution, then averag
over 20–100 disorder realizations reduces the statistica
rors to about the same level as the statistical errors assoc
with the Monte Carlo sampling. This is what we have do
in the data reported in this paper.

V. RANDOM-FIELD HEISENBERG MODEL

As we discussed, the attractive (2U) Hubbard model can
be mapped onto the repulsive model, which in turn at stro
coupling can be mapped onto a quantum spin-1

2 antiferro-
magnetic Heisenberg Hamiltonian. In the absence of dis
der, the behavior of the associated classical spin models
hibited considerable analogies to the original2U Hubbard
model.3 Here we desire to see if similar connections c
usefully be made between the disordered2U Hubbard
model and the associated classical model—the random
Heisenberg model. However, the problem of the rando
field Heisenberg model is an extremely difficult one in
own right. We emphasize that we are attempting only qu
tative contact with the attractive Hubbard model simulatio
here.

We begin by reviewing the results in a uniform magne
field, since the comparison will be useful in discussing t
case of a random field. Similar results were presented in R
3. However, here we present some additional plots wh
help to characterize more precisely the nature of the orde
phase. In the absence of a field, the continuous symmetr
the model assures us that in 2D there can be no true
range order except in the ground stateT50.36 If a field
hz5m is applied, the spins tend to lie down in thexy plane,
because then they can tilt upwards in thez direction and take
advantage of the field energy without costing as much
change energyJ as if they were antiferromagneticall
aligned in the z direction. Thus the antiferromagneti
Heisenberg model in a uniform magnetic field is argued to
in the universality class of theXY model, with a finite-
temperature Kosterlitz-Thouless phase transition into a s
with a power-law decay of the correlation functions. In t
language of the attractive model, doping breaks the cdw
degeneracy, and off half-filling one has a finite-temperat
phase transition into a purely superconducting state.9

Let us define the antiferromagnetic structure factors in
different spin directionsa5x, y, and z as the appropriate
sums of the correlations of thea component of spin on dif-
ferent sites,

Sa a5
1

N(
j ,l

^sa~ j !sa~ l!&~21! u j2 lu. ~5!

ts
wn

-
are
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1190 55C. HUSCROFT AND R. T. SCALETTAR
Simulation results for theclassical antiferromagnetic
Heisenberg model in a uniform magnetic field are shown
Figs. 11–13. The temperature dependence is shown fir
Fig. 11 on a fixed lattice size. To set a possible scale oT,
note thatTKT50.725 for theXY model.37 This is consistent
with the temperature at which the structure factor swin
upward in Fig. 11. We note that a small uniform fiel
hz51.0, enhancesSxx andSyy substantially, and dramaticall
reducesSzz. Figure 12 shows the field dependence of t
xy structure factors at a fixedT50.67 for different lattices.38

Whenhz is nonzero, there is a significant size dependenc
the structure factor even at nonzero temperature, which
gests that the presence of a field may indeed make the sy
order at finite temperature.

Of course these data are only suggestive. A careful fin
size scaling analysis would be needed to pin down whe
Tc50 or TcÞ0. To illustrate one of the issues involved, w
note that even if a phase transition occurs only atT50,

FIG. 11. Results for the structure factors as a function of te
perature for a 20320 lattice.~a! Sxx1Syy ; ~b! 2Szz. The line at
T50.67 is at the temperature used in the finite-size scaling
~Fig. 12! below.
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structure factors will show significant size dependence
to the lattice size,L'j. In the Heisenberg model, the co
rrelation length j5Cj exp(2pJ/T)/(112pJ/T) where
Cj'0.01.39 Here, with T50.67, the correlation length
j'11. The growth in the structure factorsSaa with lattice
size athz50 is consistent with this value ofj, and hence
with Tc50, as should be the case. The increased growth
Saa with lattice size at nonzerohz could merely reflect a
largerj ~but Tc still zero! or a finiteTc . The structure fac-
torsSaa continue to show the effect of this finitej through-
out the range of lattice sizes used in the simulations ill
trated in Fig. 12. Hence the value ofj in this model is
consistent with the results shown in Fig. 12, being at a te
perature where correlations have started to form across
lattice.

FIG. 12. Results for thexy structure factors as a function o
uniform fieldhz for different lattice sizes.

FIG. 13. The averages of the squares of different spin com
nentsCaa5^sa

2& as a function of uniform fieldhz . For hz50 and
Cxx5Cyy5Czz5

1
3 from rotational invariance.

-

t



n
c
a
W
-
e
nt
-

er

re

th
o
-
e-

ne
ally

r
ds.
uni-
s
an

at
ld
h
as

en

m

55 1191EFFECT OF DISORDER ON CHARGE-DENSITY WAVE . . .
We note that while the picture of the spins ‘‘lying’’ dow
in thexy plane is a physically appealing one, it is not in fa
so accurate a view quantitatively. Figure 13 shows the squ
of the spin components as a function of field strength.
show only one lattice size, 32332, since there is no depen
dence on lattice size for such a local quantity. It is appar
that even forhz52.0, where Fig. 12 shows a very significa
enhancement of thexy plane structure factor, the spins lo
cally still point almost as much in thez direction as for
hz50.0. Indeed for larger fields, the spins start to align f
romagnetically with the field, and̂sz

2& exceedŝ sx
2&5^sy

2&.
How do we reconcile this with the results for the structu
factor? Apparently, the uniform fieldhz has a large effect on
the long-range spin correlations, and very little effect on
short-range correlations. Thus while individual spins still r
tate significantly in thez direction, the antiferromagnetic cor
relations in thez direction between different spins are d

FIG. 14. Results for the structure factors as a function of te
perature for a 20320 lattice in both a zero field (hz50.0) and a
random field (Dhz51.0). ~a! Sxx1Syy ; ~b! 2Szz. The line at
T50.3 is at the temperature used in the finite-size scaling plots~Fig.
15! below.
t
re
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stroyed.~In fact they become ferromagnetic.! At the same
time, long-range antiferromagnetic correlations in the pla
are enhanced, even though the individual spins are not re
‘‘lying down’’ in the plane.

We now turn to the results of simulations forrandom
magnetic fieldshz( j ), which is the situation to which ou
random site energy attractive Hubbard model correspon
Figures 14 and 15 show analogous plots to those of the
form field case. Again for lowT a random field enhance
Sxx andSyy , although the effect is much less dramatic th
seen in Fig. 11~a!. The suppression ofSzz is more substantial,
but again less decisive than with a uniform field, Fig. 11~b!.
The random-field results shown in Fig. 15 were obtained
T50.3, while the results in the corresponding uniform fie
Fig. 12 were obtained atT50.67, the temperature at whic
previously reported uniform-field Heisenberg work w
done.3 For intermediate temperatures likeT50.67 it was
found thatSzz exceeds,by a small amount,Sxx andSyy for
small disorder. It is not clear to us why this occurs. As se

-
FIG. 15. Results for the structure factors atT50.3 as a function

of random-field strengthDhz for different lattice sizes.~a!
Sxx1Syy ; ~b! 2Szz.
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1192 55C. HUSCROFT AND R. T. SCALETTAR
by comparing Figs. 11~b! and 14~b!, Szz behaves quite dif-
ferently when the system is subjected to a uniform as
posed to a random field along thez axis. A uniform field
suppressesSzzmuch more strongly than a random field. Ne
ertheless, in both cases thez-axis structure factor is sup
pressed with respect to thexy plane structure factors at low
enough temperatures.

In Fig. 15, atT50.3, we see that increasing the disord
suppresses the structure factor in thez direction, the analog
of the cdw structure factor@Fig. 15~b!#, while the structure
factors in thexy plane, the analog of the pair structure fact
remain robust to randomness@Fig. 15~a!#. Hence we see the
same general results as seen in the disordered, attra
Hubbard model. The analogy is somewhat limited, since
do not see the destruction of thexy plane structure facto
@Fig. 15~a!#, as disorder is increased, the analog of the
struction of superconductivity~Fig. 6!. Determining the criti-
cal properties of the random-field Heisenberg model i
problem far beyond the scope of this paper. However,
note that a finiteVc for Sxx and Syy is not forbidden, for
example, by an Imry-Ma argument, since although the or
parameter in this case has continuous symmetry, it is
conjugate to the random disorderedhz field.

40

We may compare these results with those obtained
Micnas, Robaszkiewicz, and Chao using mean-field theor41

The authors mapped the disordered, attractive Hubb
model with nearest-neighbor interactionsUnn onto the
Heisenberg model in the strong-coupling limit. On-site d
order was drawn either from a uniform distribution or fro
two d functions. The finite-temperature phase diagram in
disordered system was found to be particularly rich. In
caseUnn50 and withT50, it was found that for a two-
d-function distribution, cdw order is destroyed immediate
but superconducting order persists to a finiteVc . Under the
same conditions, but for the uniform site energy distribut
used in this paper, the authors found that cdw order is ag
destroyed immediately but, in contrast to our QMC findin
in MFT no amount of disorder destroys superconductivity

VI. CONCLUSIONS

We have studied the effect of random site energies
charge-density-wave and superconducting correlations in
hy
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2D attractive Hubbard Hamiltonian at half-filling. We find a
immediate suppression of cdw order with a random o
body potentialV, whereas the pair order is relatively robus
This is consistent with a strong-coupling picture of the re
space configurations of low-energy states of pairs as diso
is turned on.

After showing the effect ofV on the spatial correlations
we performed a finite-size scaling analysis of the struct
factors, and determined that a long-range cdw is destro
for Vc'0.0, while superconducting order hasVc'1.5, which
is roughly the energy scale 4t2/U'1 which stabilizes pair-
ing. It is interesting thatVc is considerably less than tha
required for the destruction of superconductivity in t
doped system.22

We discussed briefly the distribution of different measu
ments as the disorder configuration was modified. This
abled us to determine a reasonable number of disorder
izations to average over. Finally, the strong-coupling pict
of the classical Heisenberg Hamiltonian in a random exter
field hz( j ) was shown to exhibit some similarities with th
disordered attractive Hubbard model results atuUu54.0.

There are a number of further questions we wish to
plore. First, we always performed our simulations at an
verse temperatureb sufficiently large so that we were in th
ground state of the finite size lattices we were studying. T
temperature dependence of various quantities would be in
esting to determine. We would also like to look more at t
non-equal-time, dynamical response of the system. In p
ticular, the issue of how the superconducting gap fills in w
disorder is an interesting one. This work requires an anal
continuation of the imaginary-time Green’s function, a ta
which should be challenging, especially in the presence
disorder.
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