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Effect of disorder on charge-density wave and superconducting order
in the half-filled attractive Hubbard model
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The half-filled attractive Hubbard model exhibits a simultaneous charge-density wave and superconducting
order in its ground state. In this paper we use approximation-free quantum Monte Carlo techniques to explore
the effect of disorder in the site energies on this degeneracy. We find that superconducting order survives
randomness out to a critical amount of disorder, but charge ordering is immediately destroyed. This settles the
issue as to whether disordered site energies, which do not break time-reversal invariance, can destroy pairing
correlations. We also locate the precise ratio of disorder to bandwidth required for the disorder-driven transi-
tion from the superconducting state. We explore the validity of a strong-coupling picture which maps the
system onto a Heisenberg model in a random magnetic {i8il63-1827)05701-9

[. INTRODUCTION In this paper we will explore the effect of random site
energies in the attractive Hubbard Hamiltonian
The repulsive Hubbard model has long served as a simple

Hamiltonian to describe itinerant magnetism. Similarly, the — _{> (ct G +cf i) — U1 (ny—Hn - %)
lo™)o Jo~lo -
1

attractive Hubbard model has been used to explore qualita- (ifyo

tive features of the superconducting phase transitfofhis

model does not provide a microscopic model of the origin of + E (6i— ) (Nip+1)). (1)
i

pairing. Rather it is assumed that some other degrees of free-

dom, for example, an electron-phonon coupling, have alyerec, (c!) are operators which destrdgreate electrons
ready provided the necessary attraction. Recent quantugy spin o on sitei, so the first term inH describes the

5|mulat|on_stud|e3s‘8 have explored a number of features of onning of electrons between nearest-neighbor sites on our
t_he attractive Hubbard H:_;lmlltomar),_ including a determmg-Zd square lattice|U| is the on-site attraction, whilg and
tion of the superconducting transition temperature and I, are the chemical potential and random site energies, re-
dependence on electron densitthe detailed spatial struc- spectively. ¢, are chosen uniformly ofi—V,+V]. In this
ture of the pairing correlation'$,the coexistence of a Bose- paper, we will work exclusively at half-filling,
like spin gap with an otherwise degenerate Fermi gas ofn;,+n; )=1. A related study of the current-current correla-
electrons;’ and deviations from Fermi-liquid behavit. tions and the behavior of the resistivity as a function of dis-
Much analytic work has also been done, as reviewed in Rebrder strength and temperature away from half-filling is con-
2. tained in Ref. 22.

While the interplay of superconductivity and disorder has In the absence of disordeV=0, considerable insight can
of course been extensively studied theoreticillgpnsider-  be gained by considering the effect of a particle-hole trans-
ably less is known numerically. The competition between thdormation on the down-electron operators;;; < cj; ,
dephasing effect of impurity scattering and the dramatid:uHcﬂl(—l)'X*'v. The phase factor{1)'x*'y changes sign
manifestation of phase coherence in the zero-resistance sta&te one goes between the two sublattices of (@ipartite
gives rise to a set of challenging qualitative guestions. Asquare lattice. Under this transformation the kinetic energy is
quantitative understanding is also essential in order to modehvariant, while the interaction changes sigh|« —|U|.
experiments like those which address the question of th&he chemical potential now couples to thecomponent of
possibility of a universal resistance in disordered superconthe spin on each site, instead of to the charge. In the absence
ducting films* of a chemical potential term, we have an exact mapping be-

Much recent theoretict'® and numericdf2*work on  tween the attractive and repulsive Hubbard Hamiltonians.
these issues has been done within the context of the “bosorRair correlations in the attractive model map onto spin cor-
Hubbard” model; that is, under the assumption that pre+elations in thexy plane of the repulsive model, while
formed Cooper pairs exist even in the nonsuperconductingharge-density-wavécdw) correlations are associated with
state, and that the transition is driven by the loss of phasepin correlations in the direction. Since the long-range spin
coherence, rather than the destruction of the magnitude afrder in the ground state of the two-dimensio(2D) repul-
the superconducting gap. This bosonic model should be theive Hubbard model is rotationally invariant, we immedi-
limit of the attractive Hubbard Hamiltonian as the on-siteately conclude that pairing and cdw correlations coexist in
interactionU becomes large. Despite the greater computathe ground state of the half-filled attractive model. This map-
tional simplicity of the boson models, it is the fermion sys- ping can also be used to discuss the effect of doping, as will
tem which is of fundamental interest. be described in Sec. V.
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In this paper we consider nonzero disorder=0. Our

basic conclusions are as follow) The addition of site dis- fo o fe] o fe] o 1o o Tof o fef o fo oo o
order breaks the degeneracy between superconducting and ° 1 & Tl 14 ¢ I i L L
charge-density-wave states. Equal-time density-density cor- fof o fo] o o) o] o Iof o 1o o fof o o

relations exhibit a rapid suppression of their staggered pat- * 1% & 1% @ 1ol 1] oo ool le] o ol
tern, while pair-pair correlations remain robuit) Our data Tof o 1o o fo] e e R
are consistent with an immediate destruction of long-range > o o o] o lo] o 1ol L I. ° I. ol I. Il
charge order, while superconducting correlations appear to Tof o fo] o fe] o o] o o o o) o] el I. l I.
persist out to a finit&/ .~ 1.5. (iii ) The behavior of supercon- ool ol ool o I R

ducting correlations dU| =4 are in approximate agreement (a) (b)
with that of the appropriate magnetic correlations in a strong-
coupling model. FIG. 1. Two possible real-space configurations of the electrons

An outline of the remainder of this paper is as follows: In on the lattice are shown. The pair structure factor attains its largest
Sec. Il we give a brief description of the simulation and of valueN/4 for both, while the cdw structure factor is large only for
the observables used to characterize the ground-state corrgy.
lations. In Sec. Ill we present results for local pair and ) .
charge correlations. Section IV provides a finite-size scaling It i useful to look at a few strong-coupling snapshots of
analysis of this data to determine the existence of long-rangBossible real-space electron distributions to gain a prelimi-
order. We also discuss in some detail the distribution of meabary insight into these correlation functions and the effect of
surements for different disorder realizations. Section V disSite disorder. Consider the strong-coupling limit, when all
cusses results for the strong-coupling version of this modeflectrons in the system are paired. A typical low-energy state
the antiferromagnetic Heisenberg model in a random magthen consists of a lattice with each site either empty or dou-

netic field. A summary is presented in Sec. VI. bly occupied. A configuration in which the doubly occupied
sites alternate with empty sitEBig. 1(a)] has a lower energy

than one in which doubly occupied or empty sites are adja-
cent by an amounAEx —t?/U to second order in the hop-
ping t. (In the language of the repulsive model onto which
the attractive model maps via the particle-hole transforma-
tion discussed above, this energy lowering stabilizes antifer-
romagnetism over ferromagnetism at half-filling, and is pro-

Il. BRIEF DESCRIPTION OF THE SIMULATION

We will use the “determinant” Monte Carlo algorithh
for our numerical work. In this approach the partition func-
tion is written down as a path integral by discretizing the

g ot us s exhanenta ) e s PETIONI (0 e exchange Consa) The chirge densiy
PP P P and pair structure factors defined in E@®) take on their

and potential pieces of the Hamiltonian. The interaction term___. _
is decoupled with a discrete Hubbard-Stratonovichmax'maI values /4 for Sy andN for Seqy).

transformatiorf® The resulting trace over the fermion opera- Now consider the effect of site disorder. This will not lead

. . ; . to a breaking of the pairs, but, when the site energies exceed
tors is over the exponential of quadratic forms, and so it can ., o : . )

. ; i «t“/U, it will change the sites on which the pairs prefer to
be done analytically. The result is an expression for the par-

tition function which is the sum over all values of the dis- reside[Fig. 1(b)]. Note that the pair structure factor is still

o I large for such a disordered configuration of pairs, since con-
crete Hubbard Stratonoylch field of a summa_nc_i which is th ributions to it depend only on finding doubly occupied sites
product of two determinants, one each arising from the

spin-up and spin-down degrees of freedom. Because both tr%”d empty sites somewhere in the lattice to which to hop.

random site energies and the auxiliary field couple to the owever, the phases in the charge structure factor make it

charge, the two determinants are identical, and hence theﬁxtremely sensitive to the destruction of the original stag-

product is positive. There is no fermion sign problem ing(_ared pattern. This rough argument suggests that pair order
these simulations éven away from half-filling will be more robust to randomness in the site energy than
The matricedvl ’ whose determinants give.the weight of will charge ordering. Of course, on general grounds we also
i LI ; . ; expect a term in the Hamiltonian which couples directly to
%parilr?: o :(l;l)l(i’:llllary tfilrilg Co?glrgnzji?r:lon’(_?rreeeilmpicﬁr:g%ﬁqthe charge to have the greatest effect on the associated

G =(ceh=M-1. Ob bl db charge correlations. Indeed, as discussed by Andéfson,
_ iJ—<CiCJ>__ i~ servaples are measured by ex_presshonmagnetic impuritites are not expected to destroy super-
ing them(using Wick'’s theoremin terms of the appropriate

d orod &. Of icular i h conductivity, since one can still pair appropriate eigenstates
sums and pro ucts @. O partllcu ar mtgrest to us here are ¢ o single-particle Hamiltonian which includes the ran-
the equal-time charge and pair correlations,

domness. Even when the disorder is large enough to localize
these eigenstates, it has been suggested that superconductiv-
ity survives®®

2) This overview captures the essence of how disorder af-
fects our system. In Sec. Ill, we will make this qualitative
picture more precise.

C(J_|)=<(n“+nu_l)(n“"'n“_l)%
psi—h=(AaAf), Al=clic];,
and their associated structure factors
1 . ) 1 _ I1l. LOCAL CORRELATIONS
Sean=py2y DD Sa=g2 pali—D.

7l We begin by showing some results for the disorder
(3 dependence of local quantities. The kinetic energy
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c(j—1)=0 axis for each successive disorder strenfhe numbers
labeling the vertical axis correspond to the=0.00 case.

FIG. 2. The kinetic energy as a function of disorder strength.

(k)= —(t/N)Z i jyo(cl o+ Cl,Cip) is shown in Fig. 2. As

we shall see below, superconductivity vanishes aroun%lffecteol by site disorder. Figure 4 shoa§—1) as a func-

Ve~1.5. The kinetic energy shows no special signal at thls3[ion of lattice separatiop—| for different disorder strengths.

'zrke;ns(ljtgoené Onfoctouhrz\e/ea rtr;eaj:rr"esﬁf Igtcagﬁlefr:rszﬁ‘akt‘i?]ppm%gls(gSuccessive disorder strengths have been offset vertically for
transitionZ® 9p Clarity) The lattice size is &8, inverse temperature

In the repulsive Hubbard model, random site energiesgzlo’ and|U|=4. The oscillatory character of the charge

have a fundamental qualitative effect on the double Occugorrelatlons Is indicative of cdw ordering. At=0 these

. . .~ ~“~“correlations extend over the entire lattice; that is, the corre-
pancy rate(ny;n; ), since they compete with the repulsive lation lengthé exceeds the linear lattice dimension. However
interaction and disturb local moment formation. In the attrac- leng - )
asV is turned on the correlations go to zero.

tive model, we expect site disorder to have a much less dra- Fiqure 5 shows the analoaous plot for the pair-correlation
matic effect, and indeed that is seen to be the case in Fig. iy g 9 P b
I

Longer range charge-charge correlations are dramatical nction pg(j—1). The pair correlations remain unchanged
or weakV, then are eventually suppressed for sufficiently

large randomness. We see the robustness of the pair correla-
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FIG. 3. The double occupancy rate as a function of disorder FIG. 5. Pair correlations as a function of site separation for
strength. different disorder strengths.
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FIG. 6. Charge and pair structure factors as a function of disor- FIG. 7. Finite-size scaling plots for the charge correlatidas:
der strength. V=0.0, (b) V=0.25, (c) V=0.50, and(d) V=0.75. The straight
lines are least-squares fits to the data. Error baws shown on the
tions as compared to charge-charge correlations in this plo¥ =0.25 case are consistent with a zero intercept, while error bars
which has a much greater range of disorder strengéhs, ©Nn theV=0.00 case are not consistent with a zero intercept. The
than does Fig. 4. V=0.00(clean casgerror bars are much smaller than in the disor-

The Fourier transforms of these real-space correlatiorcijered \=0.25 case, since there is no disorder averaging required in
functions are shown as a function of disorder in Fig. 6. Then® ¢lean case.
degeneracy between charge and pair correlations is evident

) - action and kinetic energies for arx@® spatial lattice at an

in the absence of randomne¥s+0. As was seen in Figs. 4 . _ h h o d

and 5, nonzero site disorder more rapidly destroys th lnverse temperaturgs=10. We' have ¢ OSGM—“ angd

char é-densit wave than the pair correlations §/=1. We see that these guantities have a fairly sharp distri-
9 y P ' bution, that is, the energy is not too sensitive to the detailed

disorder realization; the widths of the distributions are less

IV. DESTRUCTION OF LONG-RANGE ORDER than 5% of the average values. The error bars associated with

To determine whether ground-state long-range order exrealization to realization flpc.tuations in t.he.se quantities are
ists in our system, we need to do a finite-size scaling ana|yr_c_>ughly ten times the statistical uncertainties in a run con-
sis. As has been discusS&d! within the context of the re- SiSting of 1000 warm-up sweeps and 5000 measurement
pulsive Hubbard model, spin-wave therpredicts that on  SWeeps for a single realization.

a 2D lattice of siz&N=L X L, the charge-structure factor and
correlation function at largest separation should behave as L

: (a) V=0.00

1 ©
N Seaw= m?/3+a/L, c(L/2,L/12)=m?3+b/L (4 L (b) V=050 &
L (c) v=1.00 ¢
in the ordered phase. Similar results are valid for the pair 2 L(d) v=1.50 = .

correlations. Heren is the order parameter. Thus in the or-
dered phase a plot of the scaled structure factor verdus 1/
should be a straight line with a nonzero intercept giving
m?/3. We will always choose the inverse temperat@rsuf-
ficiently large that we are effectively dt=0 for our finite
lattices.

Figure 7 shows the result of this analysis for the charge
correlations. The interaction strength|i$|=4. Only in the
clean system a¥=0 is a nonzero order parameter ob-
tained. However, as seen in Fig. 8 the pair field order param-
eter remains nonzero out to approximat#ly:V,~1.533

We will conclude this section with a discussion of disor- 1/L
der averaging, since while the other aspects of our simulation
are identical to those long reported for determinant Monte F|G. 8. Finite-size scaling plots for the pair correlatioria
Carlo, little is known about what happens when randomnesg=0.0, (b) V=0.50, (c) V=1.00, and(d) V=1.50. The straight
is included. In Fig. 9 we show some histograms of the interdines are least-squares fits to the data.

Spoir/N
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We note that practical difficulties limit the number of dis-

: ‘(G) ] order realizations, and consequently the reduction in fluctua-

o ] tions due to disorder averaging, that one can attain. A single

C ] disorder realization for an>88 system aj3=10 takes over

3 1000 CPU minutes on a fast workstation. This computational

] difficulty of these quantum Monte Carlo calculations pre-

i ] cludes disorder averaging over thousands of realizations, as

- = NEE AT 0 has been done in the spin-glass literature. The non-Gaussian

—1.55 =1.5 nature of the distributionBe.g., Fig. 10a)] of course raises

Interaction Energy difficult questions about how to do the averaging and how to

estimate error bars correctly. However, if one goes ahead and

employs the usual methods of obtaining error bars based on

an assumption of a Gaussian distribution, then averaging

. ] over 20-100 disorder realizations reduces the statistical er-

o 3 rors to about the same level as the statistical errors associated

: ] with the Monte Carlo sampling. This is what we have done

w F r in the data reported in this paper.
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-1.3 —1.25 V. RANDOM-FIELD HEISENBERG MODEL
Kinetic Energy

As we discussed, the attractive- J) Hubbard model can
be mapped onto the repulsive model, which in turn at strong
coupling can be mapped onto a quantum spiaatiferro-
Wﬁwagnetic Heisenberg Hamiltonian. In the absence of disor-

der, the behavior of the associated classical spin models ex-
hibited considerable analogies to the originral Hubbard
model® Here we desire to see if similar connections can

On the other hand, the fluctuations in quantities whichysefully be made between the disordered) Hubbard
measure long-range correlations are, as expected, muehodel and the associated classical model—the random field
larger. In Fig. 10 we show histograms of the charge and paiHeisenberg model. However, the problem of the random-
structure factors for an 88 spatial lattice at inverse tem- field Heisenberg model is an extremely difficult one in its
perature 3=10, with [U|=4 andV=1. We see that the own right. We emphasize that we are attempting only quali-
widths of the peaks are of the same order of magnitude as thative contact with the attractive Hubbard model simulations
average values of the respective structure factors. here.

We begin by reviewing the results in a uniform magnetic
field, since the comparison will be useful in discussing the
i ' ' ‘ (@) 1 case of a random field. Similar results were presented in Ref.

] 3. However, here we present some additional plots which
help to characterize more precisely the nature of the ordered
phase. In the absence of a field, the continuous symmetry of
the model assures us that in 2D there can be no true long
] range order except in the ground state=0.3° If a field
ot M eem om0 , ] h,= u is applied, the spins tend to lie down in thg plane,

0 2 4 6 8 because then they can tilt upwards in thdirection and take
Sedw advantage of the field energy without costing as much ex-
change energyl as if they were antiferromagnetically
. ' l ‘ ' ] aligned in the z direction. Thus the antiferromagnetic
Heisenberg model in a uniform magnetic field is argued to be
in the universality class of th&XY model, with a finite-
temperature Kosterlitz-Thouless phase transition into a state
with a power-law decay of the correlation functions. In the
language of the attractive model, doping breaks the cdw pair
i ] degeneracy, and off half-filing one has a finite-temperature
o 4 4 6 s phase transition into a purely superconducting state.

Let us define the antiferromagnetic structure factors in the

different spin directionsyx=x, y, andz as the appropriate

FIG. 10. Histogram of values of théa) charge andb) pair ?;rrgr?t C;Etghse correlations of the component of spin on dif-

structure factors for different disorder realizations. Each plot repre-
sents data from 100 disorder realizations. The average values are 1

shown by the vertical lines. The charge structure fackgy,,, has IS :_2 (s.(j)s (|)>(_1)\jf|\_ (5)
an apparently non-gaussian form. “CONT arliTa

FIG. 9. Histogram of values of th@) interaction andb) kinetic
energies for different disorder realizations. Each plot represent
data from 100 disorder realizations. The average values are sho
by the vertical lines.
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FIG. 12. Results for thexy structure factors as a function of
uniform field h, for different lattice sizes.

300
T

structure factors will show significant size dependence up
to the lattice sizel.~£. In the Heisenberg model, the cor-
rrelation  length  &=C.exp(2mJ/T)/(1+27J/T)  where
C,~0.01% Here, with T=0.67, the correlation length
&~11. The growth in the structure facto8,, with lattice
size ath,=0 is consistent with this value df, and hence
with T.=0, as should be the case. The increased growth of
S,. With lattice size at nonzert, could merely reflect a
larger ¢ (but T, still zerg or a finite T.. The structure fac-
tors S,, continue to show the effect of this finitethrough-

out the range of lattice sizes used in the simulations illus-
trated in Fig. 12. Hence the value df in this model is
consistent with the results shown in Fig. 12, being at a tem-
T perature where correlations have started to form across the
lattice.

FIG. 11. Results for the structure factors as a function of tem-
. . . T
perature .for a 2820 lattice.(a) S+ S.yy’ (b) ZSZZ The Ilng at 59432 Laltic
T=0.67 is at the temperature used in the finite-size scaling plot
(Fig. 12 below.

2z
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T T
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Simulation results for theclassical antiferromagnetic
Heisenberg model in a uniform magnetic field are shown in
Figs. 11-13. The temperature dependence is shown first in <
Fig. 11 on a fixed lattice size. To set a possible scalé&,of Fo
note thatT;=0.725 for theXY model®’ This is consistent
with the temperature at which the structure factor swings
upward in Fig. 11. We note that a small uniform field,
h,=1.0, enhanceS,, andS,, substantially, and dramatically
reducesS,,. Figure 12 shows the field dependence of the
Xy structure factors at a fixef=0.67 for different lattices®
Whenh, is nonzero, there is a significant size dependence of
the structure factor even at nonzero temperature, which sug- o — : ; ;
gests that the presence of a field may indeed make the system
order at finite temperature. h,

Of course these data are only suggestive. A careful finite-
size scaling analysis would be needed to pin down whether F|G. 13. The averages of the squares of different spin compo-
Tc=0 orT.#0. To illustrate one of the issues involved, we nentsC,,=(s?) as a function of uniform field,. Forh,=0 and
note that even if a phase transition occurs onlyTatO, C,= ny:CZZ:%from rotational invariance.

0.2
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FIG. 14. Results for the structure factors as a function of tem-
perature for a 2820 lattice in both a zero fieldh;=0.0) and a
random field Qh,=1.0). (@ S+Syy; (b) 2S,,. The line at
T=0.3 is at the temperature used in the finite-size scaling Fags
15) below.

FIG. 15. Results for the structure factorsTat 0.3 as a function
of random-field strengthAh, for different lattice sizes.(a)

St Syy; (b) 25,

stroyed. (In fact they become ferromagnejicAt the same
time, long-range antiferromagnetic correlations in the plane
We note that while the picture of the spins “lying” down are enhanced, even though the individual spins are not really
in thexy plane is a physically appealing one, it is not in fact “lying down” in the plane.
SO accurate a view quantitatively. Figure 13 shows the square We now turn to the results of simulations foandom
of the spin components as a function of field strength. Wemagnetic fieldsh,(j), which is the situation to which our
show only one lattice size, 3232, since there is no depen- random site energy attractive Hubbard model corresponds.
dence on lattice size for such a local quantity. It is apparenFigures 14 and 15 show analogous plots to those of the uni-
that even foih,=2.0, where Fig. 12 shows a very significant form field case. Again for lowl a random field enhances
enhancement of they plane structure factor, the spins lo- S, andS,,, although the effect is much less dramatic than
cally still point almost as much in the direction as for seen in Fig. 1da). The suppression @&,, is more substantial,
h,=0.0. Indeed for larger fields, the spins start to align fer-but again less decisive than with a uniform field, Fig(lh1
romagnetically with the field, an¢s?) exceeds(s)%):(si). The random-field results shown in Fig. 15 were obtained at
How do we reconcile this with the results for the structureT=0.3, while the results in the corresponding uniform field
factor? Apparently, the uniform field, has a large effect on Fig. 12 were obtained at=0.67, the temperature at which
the long-range spin correlations, and very little effect on thepreviously reported uniform-field Heisenberg work was
short-range correlations. Thus while individual spins still ro-done® For intermediate temperatures like=0.67 it was
tate significantly in the direction, the antiferromagnetic cor- found thatS,, exceedsby a small amounts,, and S, for
relations in thez direction between different spins are de- small disorder. It is not clear to us why this occurs. As seen
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by comparing Figs. 1b) and 14b), S,, behaves quite dif- 2D attractive Hubbard Hamiltonian at half-filling. We find an
ferently when the system is subjected to a uniform as opimmediate suppression of cdw order with a random one-
posed to a random field along tlzeaxis. A uniform field body potentiaV, whereas the pair order is relatively robust.
suppresseS,, much more strongly than a random field. Nev- This is consistent with a strong-coupling picture of the real-
ertheless, in both cases tlzeaxis structure factor is sup- space configurations of low-energy states of pairs as disorder
pressed with respect to the plane structure factors at low is turned on.

enough temperatures. After showing the effect oV on the spatial correlations,

In Fig. 15, atT=0.3, we see that increasing the disorderwe performed a finite-size scaling analysis of the structure
suppresses the structure factor in thdirection, the analog factors, and determined that a long-range cdw is destroyed
of the cdw structure factdiFig. 15b)], while the structure for V.~0.0, while superconducting order hds~ 1.5, which
factors in thexy plane, the analog of the pair structure factor, is roughly the energy scaletZU~1 which stabilizes pair-
remain robust to randomnefSig. 15a)]. Hence we see the ing. It is interesting thal/ is considerably less than that
same general results as seen in the disordered, attractivequired for the destruction of superconductivity in the
Hubbard model. The analogy is somewhat limited, since weloped syster??
do not see the destruction of th plane structure factor We discussed briefly the distribution of different measure-
[Fig. 15a)], as disorder is increased, the analog of the dements as the disorder configuration was modified. This en-
struction of superconductivit§Fig. 6). Determining the criti- abled us to determine a reasonable number of disorder real-
cal properties of the random-field Heisenberg model is dzations to average over. Finally, the strong-coupling picture
problem far beyond the scope of this paper. However, wef the classical Heisenberg Hamiltonian in a random external
note that a finiteV, for S, and S, is not forbidden, for field h,(j) was shown to exhibit some similarities with the
example, by an Imry-Ma argument, since although the ordedisordered attractive Hubbard model result$tt=4.0.
parameter in this case has continuous symmetry, it is not There are a number of further questions we wish to ex-
conjugate to the random disorderigfield.*° plore. First, we always performed our simulations at an in-

We may compare these results with those obtained byerse temperaturg sufficiently large so that we were in the
Micnas, Robaszkiewicz, and Chao using mean-field th&bry. ground state of the finite size lattices we were studying. The
The authors mapped the disordered, attractive Hubbartemperature dependence of various quantities would be inter-
model with nearest-neighbor interactiond,,, onto the esting to determine. We would also like to look more at the
Heisenberg model in the strong-coupling limit. On-site dis-non-equal-time, dynamical response of the system. In par-
order was drawn either from a uniform distribution or from ticular, the issue of how the superconducting gap fills in with
two & functions. The finite-temperature phase diagram in thalisorder is an interesting one. This work requires an analytic
disordered system was found to be particularly rich. In thecontinuation of the imaginary-time Green’s function, a task
caseU,,=0 and withT=0, it was found that for a two- which should be challenging, especially in the presence of
S-function distribution, cdw order is destroyed immediately, disorder.
but superconducting order persists to a finte Under the
same conditions, but for the uniform site energy distribution
used in this paper, the authors found that cdw order is again ACKNOWLEDGMENTS
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