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Superconductor-insulator transition in a disordered electronic system
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We study an electronic model of a two-dimensiosalave superconductor in a random potential using
guantum Monte Carlo simulations. The superfluid density and the strength of the delta function in the optical
conductivity are found to vanish beyond a critical disorder. We calculate the temperature-dependent resistivity
padT) for a highly disordered interacting Fermi system. Using this we identify the nonsuperconducting state
as an insulato.S0163-182606)51830-9

The problem of the effect of strong disorder on supercon- (4) The resistivity as a function of andV is also used to

ductivity and of the resulting supercondud®@)- independently estimate the critical disordér, which is in
insulatofl) transition in low-dimensional systems has beengood agreement with that obtained frddy .
studied experimentally for a number of yedrBheoretically, (5) Our results are consistent with a direct SC-I transition

the problem is challenging because of the complicated intefin two dimensions(2D), without an intervening metallic
play between interactions and disordewithin mean-field phase.

theory® superconductivity persists essentially all the way to Our model is defined by the Hamiltonian

the site localized limit due to an inadequate description of

the disorder-induced fluctuations of the local order param-
H=—t> (cl,c,+¢],Cip)

eter. Much of the recent theoretical effort has focused on the S

dirty boson problethwhich is expected to capture the essen-

tial physics of these fluctuations. The boson models which _2 (M_Ui)nia_|u|2 Ny 1)
are argued to describe universal properties in the vicinity of o i

the SC-I transition are also more amenable to analytaad

numericat® studies. However, if one is interested in charac-We sett=1 and measure all energies in units tofHere

terizing the phases, and testing the universality of the conCi, is a fermion destruction operator at sitewith spin o,

ductance at the transition, one has to go back to a descriptidh»= Ci,Ci,, and the chemical potential fixes the average

in terms of the electronic degrees of freedom. density(n). The site energies; are independent random
As a first step in this direction we use quantum MonteVvariables with a uniform distribution ovér-V,V]. The lat-

Carlo (QMC) simulations to study the simplest fermionic tice sum (ij) is over near neighbor sites on a two-

problem—the attractive Hubbard model with onsite dimensional square lattice. Note that this model focuses on

disorder—which can have superconducting, insulating, ané'€ localization induced by the disorder; it does not, how-

(possibly metallic phases. Our main results are the follow-€Ver; incorporate_ the dis_order-dependence of the effective
ing. electron-electron interaction.

(1) At low temperatures, we calculate the superfluid stiff- ; SMCf simgla}tifn_s htave pglayed anf ig)por(;arr:} rc())le. i_n the
nessDg, a measure of the Meissner effect, and the chargé udy of model(1) in the absence of disordeM¢0): in

X e o ' élucidating its phase diagrdnand its anomalous normal
stiffnessD, related to the infinite conductivity. We find that . :
D,=D, and that both decrease with increasing disoMer state behavicf. Here we Use the same QMC technidue

B 4 itical/. th tem b d tstudy the disordered case, which is still free of the the ferm-
Beyond a criticalV; the system becomes nonsuperconducty, sign problem.

g We shall focus on various quantities obtained from the

(2) We use a simple analytic continuation method to ex- ; i x 10 ;

7o current-current correlation functioh.”” The (paramagnetic
tract theT-dependent dc resistivityy(T) from QMC data. iece of the current operator is defined as (P 9
This method is argued to be valid for disordered systemsF,)

and independent checks on its validity are presented.
(3) We find that forV>V, the system shows insulating i (Im=e"7 it ot e —cfe e HT (2
behavior withdpg./d T<O0. ix(17) 2{;« (C115,6C, , 7 CloC,, 5 ) . @
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i T J FIG. 2. D(w,) as a function ofn=w,/27T>0, for fixed
U=-4.0 T=0.10 <n>=0.875 T=0.1 and various disorder strengths. The extrapolated value
o} ] D(w,—0) is shown as a solid symbol at=0. For smallV this
e o o/m extrapolation yields a nonzei indicating a SC. For the metallic
© D/m systemV=3.25(=V,) we obtainc . from the slope at smaii; see

— text.

AT=lim Ay (ay= 0,dy;iw,=0),
qy"O

] De=m[ —K,—AT]. 5

Resultd? for AT, A%, and—K, are plotted in Fig. (a) for
U=—4,T=0.10, and(n)=0.875 as a function of. A" is
estimated by using a linear extrapolation of the two smallest
(b) v gy values. In Fig. 1b) we plotDg, which decreases mono-
tonically with disorder. There is a critical valué, beyond
FIG. 1. (& The kinetic energy;-K,, and transverse and longi- which D,=0 and the system becomes nonsuperconducting.
tudinal current-current correlation functions! andA‘, are shown  Note thatD andD (to be defined beloywere measured at
as a function of disordev. A" tracks — K, as required by gauge T low enough that measurements <mfiLCiTCjTTCjT1> confirm

invariance. The difference betwee and —K, signals a nonzero ¢ the pairing correlations are well formed across the entire
superfluid densitysee Eq.(5)]. (b) The superfluid densit{p; and lattice

charge stiffnes® (a measure of infinite dc conductivjtas a func- We now tumn to the conductivity Rew)

tion of disorderV. Ds=D for all V. =D é(w)+ o w). The first term represents the infinite dc
conductivity of a superconductor, with the charge stiffness

The impurity averagedA,, is then given by (Ref. 10 D= [ —K,—lim,_oReA .(q=0:w+i07)]. The
5 regular part of the conductivity is given byr{w)
G v— : - il a—iwgr =ImA(g=0;w)/w, where A(q;w+i0")=ReA(q;w)

Aol G5l @n) 2| fo dr(jx(1,7)ix(0.0))e""e 3 +ilmA(g; ), omitting thexx subscripts for simplicity. To

study the dc limit we will use two independent methods. We
wherew,=2nw/B, and(- - -) denotes a thermal average at afirst use the Matsubara correlation function
temperaturel = 8! for a given realization of disordeand
an average over an ensemble of such realizations. D(wp) =7 —Ky=A(q=0,iwy)], (6)
Gauge invariance requires that the longitudinal part o

f . . .
A satisfy the equalit"iL shown in Fig. 2. From the spectral representation for

A(iw,) and the sum rulé¢;dw Reo(w) = 7(—K,)/2 we ob-
tain
At= lim Axx(qxvquO;iwnzo):_ny 4

0x—0 0
D(w,)= D+2wﬁf dw 0 of 0)/[ 02+ 03] 7)
where K,=(—t2,(c/,3,¢, +¢l,C ), the kinetic en- 0

ergy in thex direction, represents the diamagnetic part of thelt follows that D(w,) increases monotonically with from
response. We have verified this equality as a nontrivial checB (w,—0)=D to D(w,—%®)=m(—K,) (not shown in Fig.
on our numerics; see Fig(d. 2 but verified in the daja

The superfluid stiffnesB ¢ is obtained from the transverse  From the extrapolatio® (w,—0) we get a honvanishing
current-current correlation functiGh!! D, and hence infinite dc conductivity for low disorder



R3758 TRIVEDI, SCALETTAR, AND RANDERIA 54

(V<V,.) superconducting systems; see Fig. 2. Vhdepen- T T T
dence ofD is shown in Fig. 1b), and within the accuracy of U=—d
our numerics, we find thdd =D for all disorder strengths. =1.0 to 5.0
ForV>V,, we findD=0. Note that, in contrast to nonran- <n>=0.875
dom systemg¢Ref. 10, D at T=0 cannot be used to charac-
terize the nonsuperconducting state Y62V since neither
dirty metals nor insulators have&function in o(w).

We must therefore find a way to extract the
T-dependent resistivity to distinguish a metal from an insu-
lator. From the fluctuation-dissipation theorem we obtain )

20
T
<

15

p/Pq
10

IMA(0; @), (8)

. [tede  exp—o7)
Axx(q’T)_f_m7m

for 0O<r<p. To obtain Im\ from A(q; ), which is com-
puted in the QMC, requires a numerical inversion of the @ T
Laplace transform. We instead use a techrfiqualid for T T
T<Q, where() is the scale on which Ith deviates from its
low frequency behavior (Ih=woy). ProvidedT<(), Eq.
(8) simplifies to

0.8

10

Axx(qZO;TZB/Z)ZWUdc/IBZv 9

P/PQ

which yields the dc conductivity. We note that this simplifi-
cation maynot be valid for nonrandom systems: e.g., for a
Fermi liquid the scal€)=1/7,_.~N(0)T? so one can never 0
satisfy T<() at low T. However, for the highly disordered
state that we study, we expect the sc8ldéo be set by the
disorderV and to beT independent, so that E¢P) is valid.
We will present below additional consistency checks of this o ! L
approximation. 0 2 4 6

In Fig. 3@ we plot the dc resistivitypy.= l/og4. as a (b) vV
function of temperature for various degrees of disorder. We
use units wher@”=7%=1 so that the quantum of resistivity  FiG. 3. (a) dc resistivity, obtained from Eq9), as a function of
pPQ= h/(4€?)= /2. For small disorder we see tha de- temperature, with disorder strengih= 1 (lowest curve, 1.5, 2, 2.5,
creases with lowering’; with increasing disorder th& de- 3, 3.25, 3.5, 4, 4.5, and 8op curve. The point atT=0.10, for
pendence is altered qualitatively: for larde we see that V=3.25=V,, is obtained fromD(w,); see Fig. 2.(b) py as a
dpq./dT<O0, strongly suggestive of insulating behavior function of disorderv for various temperatures. Representative
(pgec= at T=0). error bars are shown.

To see where this transition takes place it is useful to
replot the data of Fig. (@) aspq. as a function of the disorder ~ As an independent check on the results of E%). we
strengthV for different temperatures. This is done in Fig. €stimate the conductivity of the metakith V=V,), sepa-
3(b); from the crossing point of the various curves we esti-fating the SC from the insulator, from the smal| behavior
mate the critical disordeY, separating the SC from the in- 0f D(w,). The metal has a finite dc conductivity
sulator. We note that our results fog{(T) [andD(w,) dis- Reor(w—0)=0gq;, which leads toD(w,)=moudw,| for
cussed beloyfor |U|=3,4,6 are consistent with a direct @w,—0, using Eq.(7). Thus the slope oD(w,) at small
SC-I transition in 2D, without an intermediate metallic @, May be used to estimate the conductivity; see Fig. 2
phase'® where the best linear fit to the pointsmat1,2,3 is shown.

The curves in Fig. 3 are remarkably similar to those foundThe value of pg.= oy obtained using this method, at
in the experimental literatureand represent the first QMC T=0.10 forV=3.25(=V,), is shown in Fig. &). This low
calculations of the T-dependent resistivity in a disordered] estimate is in excellent agreement with the results of Eqg.

interacting fermi system. (9) at higher temperatures.
In the SC state the form of R€w) changes due to the It is also worth emphasizing the consistency of results
appearance ob §(w) below T, and Eq.(9) is not appli- obtained from different observables. The critisgl may be

cable. Thus it cannot be used to see that the low disordegstimated in several independent ways. Low temperature es-
systems in Fig. @) do indeed go superconducting at lower timates ofV. obtained from the vanishing dd (Ref. 14
temperatures. To see the SC behavior explicitly, we recaland of D are clearly identica[see Fig. 1b)]. In addition,

the D(w,) analysis presented above, which works best aD(w,) is consistent with metallic behavior, i.e., a linear
low T since it involves anw,—0 extrapolation. As seen approach to the origin, only fov¥=V.; the SC systems
from the results of Figs.(b) and 2 the low disorder systems have a nonzero interce@ and the insulators do not ap-
(V<3) clearly show a nonzer® indicative of infinite dc  proach the origin linearly. Another estimate ¥f comes
conductivity. from the higher temperature crossing plpsee Fig. 8)].
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On the 88 systems studied, we find excellent agreementinswer the question of universality ofV.), and is currently
between these methods. For instance,|fof=3, V.=3.5  being pursued. What we have shown here is that reliable
+0.7 (from Dg) andV,=3.8%=0.5 (from pgyo); while for  low-temperature calculations in a disordered, interacting
|[U[=4, V;=3.2+0.7 (from Dg) and V,=3.5-0.5 (from  fermion model are feasible in the vicinity of a quantum criti-
Pdd)- cal point, and one can determine experimentally interesting

We can also estimate the resistancevatusing Eq.(9)  quantities such as the superfluid density aadependent dc
and independently from the slope Bf(w,), both of which  resistivity.

give very similar results. We fing(V.)/pg=4.1+1.3 (for o ]
|U|=3); 5.2+ 1.5 (for |U|=4); and 8.3:2.0 (for |U|=6). We gratpfully ackpowledge the hospitality of the Institute
The finite lattice estimate gf(V.) appears to depend on the of Theoretical Physics, Santa Barbar'a,. where this vvprk was
strength of the attractive interactidty| (as a function of Started. We thank K. Runge for providing useful scripts for
which one expects a crossover from a fermionic to a bosoni€loing the disorder averaging. The numerical calculations
regime in this model; for the nonrandom models, see Ref. 8 were performed primarily on Cray C-90 computers at SDSC
The dirty boson model predidtsthat p(V,) is universal, and NERSC. This work was supported by the NSF under
while the experimentsshow sample and material depen- Grant No. DMR 9528535 and Grant No. ASC-9405041
dence, with some indicatioH¥ that the fermionic quasipar- (R.T.S), and by DOE Grant No. W-31-109-ENG-38.T.
ticles are responsible for the nonuniversality of this quantityand M.R). R.T.S. thanks the hospitality of Argonne National
A finite-size scaling analysis of QMC data can clearly Laboratory.

*Present address. 10p, J. Scalapino, S. R. White, and S. C. Zhang, Phys. Re47,B
1(a) D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 7995(1993.
62, 2180(1989; (b) A. F. Hebard and M. A. Paalaneibjd. 65, ' G. Baym, inMathematical Methods in Solid State and Superfluid
927(1990; and(c) J. M. Valles, R. C. Dynes, and J. P. Garno,  Theory Scottish Universities Summer School, 1967, edited by
ibid. 69, 3567(1992; (d) A. Yazdani and A. Kapitulnikjbid. R. C. Clark and G. H. DerrickPlenum, New York, 1969
, 74, 3037(1999. _ 12 We have run on 88 lattices with a discretization g8 of A7
For theoretical reviews, see P. A. Lee and T. V. Ramakrishnan, —1/g. we have averaged over 10—20 disorder realizations, do-
Rev. Mod. Phys57, 287 (1983; D. Belitz and T. Kirkpatrick, ing 200—800 equilibration sweeps followed by 1000-5000 mea-
3 ibid. 66, 261 (1994). surement sweeps for each realization. The error bars in all the
M. Ma and P. A. Lee, Phys. Rev. 82, 5658(1983. figures are determined by the sample-to-sample variatidne

4 .
5M' P. A. Flshe.ret al, Phys. Rev. BA0, 546 (19_89' . to disordey; the statistical fluctuationgfrom the QMQ are
G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev.

smaller by a factor of about 5.

Lett. 65, 1765(1990; R. T. Scalettar, G. G. Batrouni, and G. T. 5

Zimanyi, ibid. 66, 3144 (1997. For |U|=0., the scaling theory pf Anderson localization shows
6W. Krauth, N. Trivedi, and D. M. Ceperley, Phys. Rev. L&, that there is no metallic pha_se in Z{Bef: 2 For |U|— oo, there
2307 (1991): M. Makivic, N. Trivedi, and S. Ullahjbid. 71, are general arguments against the existence of a Bose metal at
2307(1993. T=0 in any dimension; see A. J. Leggett, Physica FenBica
7R. T. Scalettaet al, Phys. Rev. Lett62, 1407(1989; A. Moreo 125(1973). Thus,if there is a metallic phase in the 2D model, it
and D. J. Scalapindbid. 66, 946 (1991). can only be at intermediaté)| where the QMC should be most
8M. Randeria, N. Trivedi, A. Moreo, and R. T. Scalettar, Phys.  reliable. Note that the model of E(L) would very likely have a
Rev. Lett.69, 2001(1992; N. Trivedi and M. Randeriaibid. metallic phase for sma|U| in 3D.
75, 312(1995. 14 SinceD = (V—V,)¢ with (Ref. 4 {=zv>1, we expecV, to lie

°R. Blankenbecler, R. L. Sugar, and D. J. Scalapino, Phys. Rev. D in the smallD tail in Fig. 1(b).
24, 2278 (1981); S. R. Whiteet al, Phys. Rev. B40, 506  1°M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Lett.
(1989. 64, 587 (1990.



