NAME: KEY

Quiz 3, Physics 9C, Winter 2016

General Instructions: This quiz is closed book. Only a calculator is allowed. Please show all your work, and give units for all answers and on all graphs. Credit will only be given for complete solutions. The constant k in Coulomb's law is $k = 9 \cdot 10^9 \text{ Nm}^2/\text{C}^2$.

Charge $Q = +8.0 \,\mu\,C$ is distributed uniformly over the volume of an insulating sphere that has radius R = 7.0 cm. What is the potential difference between the center of the sphere and the surface of the sphere? **Important:** A complete solution to this problem will provide the following steps:

- (a) Write down Gauss' Law.
- (b) Apply Gauss' Law to get the electric field inside the sphere (r < R). Explain clearly how you get the charge enclosed that you use in your equation.

(c) Write the equation which tells you how to get V from E.

a)
$$\phi_E = 4\pi k \ Qenclosed$$

b) $4\pi r^2 E$

(because $E \text{ same}$

everywhere on surface and $\widehat{E} \parallel \widehat{n}$)

Verclosed

Verclosed

Verclosed

Sphere

$$F = \frac{k@r}{R^3}$$

$$V_a = -\int_{a}^{b} E dr$$

$$V_R = -\int_{R}^{o} \frac{k@r}{R^3} dr = +\int_{a}^{R} \frac{k@r}{R^3} dr$$

$$= \frac{k@}{R^3} \frac{1}{2}r^2 \Big|_{o}^{R} = \frac{k@}{2R}.$$

Numerical value
$$V_R^0 = \frac{(9.10^9)(8.10^{-6})}{2(.07)} = 514000 \text{ Volts}$$