EEC 130A: Homework 6

Due: 3:30 pm, Tuesday, Feb. 17th, 2015

1. (FAE P4.22) Given the electric flux density

$$D = \hat{x}2(x+y) + \hat{y}(3x-2y)$$
 (C/m²)

determine

- (a) ρ_v by applying the differential form of Gauss's law.
- (b) The total charge Q enclosed in a cube 2 m on a side, located in the first octant with three of its sides coincident with the x-, y-, and z-axes and one of its corners at the origin.
- (c) The total charge Q in the cube, obtained by applying the integral form of Gauss's law.
- 2. (FAE P4.27) An infinitely long cylindrical shell extending between r=1 m and r=3 m contains a uniform charge density ρ_{v0} . Apply Gauss's law to find D in all regions (i.e. for $0 < r \le 1$ m, 1 m $< r \le 3$ m, and r > 3 m)
- 3. (FAE P4.32) A circular ring of charge of radius a lies in the x-y plane and is centered at the origin. Assume also that the ring is in air and carries a uniform density ρ_l
- (a) Show that the electrical potential at (0,0,z) is given by

$$V = \frac{\rho_l a}{2\epsilon_0 \sqrt{a^2 + z^2}}.$$

- (b) Find the corresponding electric field \boldsymbol{E} .
- 4. Given a load impedance of $Z_L = 20 j20 \Omega$, use the single (shorted) stub method to match it to a 50- Ω system. Find the position d and the length l (in terms of wavelegth λ) of the shorted stub. Assume all transmission lines used have characteristic impedance of 50- Ω .