- **6.2** A tow truck pulls a car 5.00 km along a horizontal roadway using a cable having a tension of 850 N. (a) How much work does the cable do on the car if it pulls horizontally? If it pulls at 35.0° above the horizontal? (b) How much work does the cable do on the tow truck in both cases of part (a)? (c) How much work does gravity do on the car in part (a)? - **6.10** •• An 8.00-kg package in a mail-sorting room slides 2.00 m down a chute that is inclined at 53.0° below the horizontal. The coefficient of kinetic friction between the package and the chute's surface is 0.40. Calculate the work done on the package by (a) friction, (b) gravity, and (c) the normal force. (d) What is the net work done on the package? - **6.12** •• You apply a constant force $\vec{F} = (-68.0 \text{ N})\hat{i} + (36.0 \text{ N})\hat{j}$ to a 380-kg car as the car travels 48.0 m in a direction that is 240.0° counterclockwise from the +x-axis. How much work does the force you apply do on the car? - **6.19** •• Use the work–energy theorem to solve each of these problems. You can use Newton's laws to check your answers. Neglect air resistance in all cases. (a) A branch falls from the top of a 95.0-m-tall redwood tree, starting from rest. How fast is it moving when it reaches the ground? (b) A volcano ejects a boulder directly upward 525 m into the air. How fast was the boulder moving just as it left the volcano? (c) A skier moving at 5.00 m/s encounters a long, rough horizontal patch of snow having coefficient of kinetic friction 0.220 with her skis. How far does she travel on this patch before stopping? (d) Suppose the rough patch in part (c) was only 2.90 m long? How fast would the skier be moving when she reached the end of the patch? (e) At the base of a frictionless icy hill that rises at 25.0° above the horizontal, a toboggan has a speed of 12.0 m/s toward the hill. How high vertically above the base will it go before stopping? - **6.37** •• A 6.0-kg box moving at 3.0 m/s on a horizontal, frictionless surface runs into a light spring of force constant 75 N/cm. Use the work-energy theorem to find the maximum compression of the spring. - **6.40** A 4.00-kg block of ice is placed against a horizontal spring that has force constant k = 200 N/m and is compressed 0.025 m. The spring is released and accelerates the block along a horizontal surface. You can ignore friction and the mass of the spring. (a) Calculate the work done on the block by the spring during the motion of the block from its initial position to where the spring has returned to its uncompressed length. (b) What is the speed of the block after it leaves the spring? - **6.41** A force \vec{F} is applied to a 2.0-kg radio-controlled model car parallel to the x-axis as it moves along a straight track. The x-component of the force varies with the x-coordinate of the car as shown in Fig. E6.41. Calculate the work done by the force \vec{F} when the car moves from (a) x = 0 to x = 3.0 m; (b) x = 3.0 m to x = 4.0 m; (c) x = 4.0 m to x = 7.0 m; (d) x = 0 to x = 7.0 m; (e) x = 7.0 m to x = 2.0 m. - **6.68** •• A 5.00-kg package slides 1.50 m down a long ramp that is inclined at 24.0° below the horizontal. The coefficient of kinetic friction between the package and the ramp is $\mu_k = 0.310$. Calculate (a) the work done on the package by friction; (b) the work done on the package by gravity; (c) the work done on the package by the normal force; (d) the total work done on the package. (e) If the package has a speed of 2.20 m/s at the top of the ramp, what is its speed after sliding 1.50 m down the ramp? **6.85** • A 5.00-kg block is moving at $v_0 = 6.00$ m/s along a frictionless, horizontal surface toward a spring with force constant k = 500 N/m that is attached to a wall (Fig. P6.85). The spring has negligible mass. Figure **P6.85** - (a) Find the maximum distance the spring will be compressed.(b) If the spring is to compress by no more than 0.150 m, what - should be the maximum value of v_0 ? **6.89** •• On an essentially frictionless, horizontal ice rink, a skater moving at 3.0 m/s encounters a rough patch that reduces her speed to 1.65 m/s due to a friction force that is 25% of her weight. Use the work-energy theorem to find the length of this rough patch. **3/120** The 15-lb cylindrical collar is released from rest in the position shown and drops onto the spring. Calculate the velocity v of the cylinder when the spring has been compressed 2 in. Problem 3/120 **3/125** In a railroad classification yard, a 68-Mg freight car moving at 0.5 m/s at A encounters a retarder section of track at B which exerts a retarding force of 32 kN on the car in the direction opposite to motion. Over what distance x should the retarder be activated in order to limit the speed of the car to 3 m/s at C? Ans. x = 53.2 m Problem 3/125