Problems from Engineering 102 (Dynamics)

2/78 A rocket is released at point A from a jet aircraft flying horizontally at 1000 km/h at an altitude of 800 m. If the rocket thrust remains horizontal and gives the rocket a horizontal acceleration of 0.5g, determine the angle θ from the horizontal to the line of sight to the target.

Problem 2/78

2/108 A particle moves on a circular path of radius r=0.8 m with a constant speed of 2 m/s. The velocity undergoes a vector change $\Delta \mathbf{v}$ from A to B. Express the magnitude of $\Delta \mathbf{v}$ in terms of v and $\Delta \theta$ and divide it by the time interval Δt between A and B to obtain the magnitude of the average acceleration of the particle for (a) $\Delta \theta = 30^{\circ}$, (b) $\Delta \theta = 15^{\circ}$, and (c) $\Delta \theta = 5^{\circ}$. In each case, determine the percentage difference from the instantaneous value of acceleration.

Problem 2/108