2.19. Figure 2.35 is a graph of the coordinate of a spider crawling along the x-axis. (a) Graph its velocity and acceleration as functions of time. (b) In a motion diagram (like Fig. 2.13b and 2.14b), show the position, velocity, and acceleration of the spider at the five times \(t = 2.5 \) s, \(t = 10 \) s, \(t = 20 \) s, \(t = 30 \) s, and \(t = 37.5 \) s.

Figure 2.35 Exercise 2.19.

2.30. At \(t = 0 \) a car is stopped at a traffic light. When the light turns green, the car starts to speed up, and gains speed at a constant rate until it reaches a speed of 20 m/s 8 seconds after the light turns green. The car continues at a constant speed for 60 m. Then the driver sees a red light up ahead at the next intersection, and starts slowing down at a constant rate. The car stops at the light, 180 m from where it was at \(t = 0 \). (a) Draw accurate \(x-t \), \(v-t \), and \(a-t \) graphs for the motion of the car. (b) In a motion diagram (like Figs. 2.13b and 2.14b), show the position, velocity, and acceleration of the car at 4 s after the light changes, while traveling at constant speed, and while slowing down.

2/4 The displacement of a particle which moves along the x-axis is given by \(s = (-2 + 3t)e^{-0.5t} \), where \(s \) is in meters and \(t \) is in seconds. Plot the displacement, velocity, and acceleration versus time for the first 20 seconds of motion. Determine the time at which the acceleration is zero.

2/30 A particle moving along the positive x-direction with an initial velocity of 12 m/s is subjected to a retarding force that gives it a negative acceleration which varies linearly with time for the first 4 seconds as shown. For the next 5 seconds the force is constant and the acceleration remains constant. Plot the velocity of the particle during the 9 seconds and specify its value at \(t = 4 \) s. Also find the distance \(\Delta x \) traveled by the particle from its position at \(t = 0 \) to the point where it reverses its direction.

\[a_x, \text{ m/s}^2 \]