PHY 9A Discussion 5, Spring 2018

1. Box on a Slope with Friction - Revisited

A box of mass $m=10[\mathrm{~kg}]$ is moving on a frictionless ground in the horizontal direction with constant speed $v_{0}=8$ $[\mathrm{m} / \mathrm{s}]$, and starts to climb up a slope, which is smoothly connected to the frictionless ground, with an angle, θ, to the horizontal at $t=0$ [s]. Unlike the ground, the slope has the static frictional coefficient of $\mu_{\mathrm{s}}=0.4$ and the kinetic frictional coefficient of $\mu_{\mathrm{k}}=0.1$.

In the previous discussion, we have seen the maximum angle with which the box stops and stays at the highest position is given by $\tan \left(\theta_{\max }\right)=\mu_{\mathrm{s}}$. By using $\boldsymbol{F}=m \boldsymbol{a}$, we have also calculated the height, h, to the position of the box when it stops with $\theta=\theta_{\max }$, and found

$$
h=\frac{v_{0}^{2}}{2 g} \frac{\mu_{\mathrm{s}}}{\mu_{\mathrm{s}}+\mu_{\mathrm{k}}} .
$$

Here we calculate h again, but with the work-energy principle, and we will find it is much easier. In the following questions, consider the case where $\theta=\theta_{\text {max }}$.
i. Find the initial and final mechanical energies.
ii. Calculate the energy dissipated due to kinetic friction.
iii. By using the (generalized) work-energy principle, $\Delta E=W_{\text {ext }}$, calculate h.

2. Time-dependent Force

A time-dependent force in 2-dimensional flat space expressed in the cartesian coordinates,

$$
\boldsymbol{F}(t)=\binom{F_{x}(t)}{F_{y}(t)}=F_{0}\binom{2 \sin (2 \omega t)-\sin (\omega t)}{2 \cos (2 \omega t)-\cos (\omega t)},
$$

where $F_{0}=10[\mathrm{~N}]$, and $\omega=\pi / 2[\mathrm{rad} / \mathrm{s}]$, is acting on a test particle with mass $m=5[\mathrm{~kg}]$, and the particle is at rest at $t=0$ [s].
i. Find the position of the particle as a function of time.
ii. Does the particle come back to its original position? If yes, then find the time it first comes back; if no, then find the position of the particle at $t=4[\mathrm{~s}]$.
iii. Try to draw the trajectory of the particle. (You can use your favorite graphing software to do so.) What does it look like?

