PHY 9A Discussion 2, Spring 2018

1. Throwing a Ball at an Angle

Alice throws a ball at an angle θ to the horizontal ground with the initial speed $v_{0}=10[\mathrm{~m} / \mathrm{s}]$. We ignore the effect of air resistance.

i. What angle maximizes the horizontal traveling distance of the ball? Calculate the horizontal distance with the angle obtained.
ii. What is the maximum height that the ball can attain with the angle calculated above?
iii. Changing the angle from the maximizing one by $\Delta \theta$ gives the same horizontal traveling distance as the one obtained by changing it by $-\Delta \theta$. Prove this statement. Which of the two changes ($\Delta \theta$ or $-\Delta \theta$) gives shorter traveling time?

2. A Ball on an Inclined Ramp

Bob can run at a constant velocity $v=10[\mathrm{~m} / \mathrm{s}]$ for the first four seconds, but can only run as fast as $v=6[\mathrm{~m} / \mathrm{s}]$ afterward. Now Bob runs the 100-meter dash against a ball on an inclined ramp which makes an angle of θ with the ground. (Thus the ball actually runs the more-than-100-meter dash.) The ball is initially at rest, and we assume that there is no friction nor air resistance.
i. What is the record time of Bob?
ii. Find the relationship between θ and the record time of the ball.
iii. What is the minimum angle with which Bob cannot win the race? Is there any way that Bob wins the race regardless of θ ? Explain.

