
This content is protected and may not be shared, uploaded, or distributed.

Physics 40: Laboratory Seven
Tuesday, April 21, 2020

Today’s Goals: Further Kepler Thoughts; Arrays.

[1] Further Kepler Thoughts.

For the harmonic oscillator we discussed the conserved energy:

E =
1

2
kx2 +

1

2
mv2

The proof that E is conserved was a simple exercise in the chain rule from calculus, combined
with using Hooke’s Law F = −kx:

dE

dt
= kx

dx

dt
+ mv

dv

dt
= kxv + mva

= kxv + mv
−kx
m

= kxv − kxv = 0.

Since dE/dt = 0, the energy is constant in time.

The proof of energy conservation for the Kepler problem is identical in spirit, just a bit more
complex mathematically. Again, it is just the chain rule combined with the use of Newton’s
universal law of gravity, which gives the forces Fx and Fy (derived in class last Thursday):

Fx = −GMmx

r3
= max Fy = −GMmy

r3
= may

It is useful to do a little initial exercise looking at the time derivative of r =
√

x2 + y2:

dr

dt
=

d

dt
(x2 + y2)1/2

=
1

2
(x2 + y2)−1/2 d

dt
(x2 + y2)

=
1

2r

(
2x

dx

dt
+ 2y

dy

dt

)
=

1

r

(
x vx + y vy

)
You should go through the algebra above and understand it! It will help a lot in Physics
105, in addition to being good calculus practice.

1

With that little exercise out of the way, we can go after the energy:

E = −GMm

r
+

1

2
m(v2x + v2y)

The first term in the equation is the gravitational potential energy. The second is the kinetic
energy. Taking the derivative with respect to time:

dE

dt
=

GMm

r2
dr

dt
+ m

(
vx

dvx
dt

+ vy
dvy
dt

)
=

GMm

r2
1

r

(
x vx + y vy

)
+ m

(
vxax + vyay

)
The last line uses dr/dt from the previous page. The final step is to use the equations for ax
and ay for gravity (also on the preceding page):

dE

dt
=

GMm

r3
(
x vx + y vy

)
+ m

(
vx
−GMx

r3
+ vy
−GMy

r3
)

= 0

So the energy in the formula at the top of the page is conserved!

[HW4-1] Add two lines to your molecular dynamics code for the Kepler problem to compute
E and print it. Note that when you have very large numbers to print, you may wish to do
so in scientific notation. Both floats and doubles can be printed using %e rather than %f
or %lf. This line prints the time t, the position x, y, the energy E and Q, all in scientific
notation:

printf("\n%e %e %e %e %e",t,x,y,E,Q);

Make a plot of E versus t. Will google sheets accept scienttic notation? If not, you can look
at your output and see what the order of magnitude of the numbers is. If you see the energy
is 4.56×1032, then divide E by 1032 before printing it, so you code just prints 4.56. Then, on
your plot, say somewhere that ‘energy is in units of 1032 Joules’. This approach is basically
the same philosophically as using special names for large numbers. We don’t want to write
2309000000, so instead we say 2.309 trillion. The word ‘trillion’ tells us the 2.309 is in units
of 109.

You will find that E is not precisely constant. Discuss whether the variations in E are
significant or not. Hint: when a quantity is changing, it is ofetn useful to ask what the
percent variation is. For example, if your tuition was $4500 last quarter, and it increases by
$50, the percent variation is 100(50/4500) = 1.11%, about one part in one hundred. By how
many percent is E varying in your MD code?

[HW4-2] Using similar algebra, prove that

Q = m
(
xvy − yvx

)
is conserved. This is a much easier problem than proving energy conservation! What is a
better name for Q?

2

[HW4-3] Add a line to your molecular dynamics code for the Kepler problem to compute
Q. Make a plot of Q versus t. Discuss the variation in Q.

[HW4-4] In some mechanics class (Physics 9A if you were a freshman at UC Davis), you
learned that for uniform circular motion the acceleration points toward the center of the
circle and has magnitude

a =
v2

r
so that F =

mv2

r

If you combine this with Newton’s law of gravity you find that for a circular orbit (which is
what most planets have, roughly)

GMm

r2
=

mv2

r

This tells you a really simple relation between the kinetic energy mv2/2 and the potential
energy −GMm/r. What is that relation? What is the total energy?

[HW4-5] For a planet to be able to escape the sun, by definition it must be able to achieve
r → ∞. What is the potential energy if that happens? What is always true of the sign of
the kinetic energy? Since energy is conserved, what must be true of the energy if a planet
is to be able to escape the sun? In your homework last week, what were the energies when
you set vy = V/2 and vy = 2V ? Does this explain what you observed in the orbits?

3

[2] We have been defining variables one at a time using statements like:

int j,N;

double dt,t=0.,x,y,Msun,Mearth,r,vx,vy,G;

double E,Lz;

at the top of our codes. Suppose you wanted to do something like keep track of the homework
scores of j = 1, 2, 3, · · · 200 students in a class using a C code. You could define 200 variables:

double hw001,hw002,hw003,hw004,hw005,hw006,hw007,hw008,hw009,hw010;

double hw011,hw012,hw013,hw014,hw015,hw016,hw017,hw018,hw019,hw020;

double hw021,hw022,hw023,hw024,hw025,hw026,hw027,hw028,hw029,hw030;

[...]

double hw191,hw192,hw193,hw194,hw195,hw196,hw197,hw198,hw199,hw200;

That would be pretty tedious!

Even worse, suppose your grading rubric was that the final grade was determined by the
average of the homework score and the quiz score. You would need to define 200 more quiz
variables and 200 more average variables, and then compute for each student:

ave001=(hw001+quiz001)/2.0;

ave002=(hw002+quiz002)/2.0;

ave003=(hw003+quiz003)/2.0;

[...]

ave200=(hw200+quiz200)/2.0;

That’s 200 lines of code!

There has to be a better way!

The answer is to define an “array”. You can think of an array as a trick to define 200
variables all at once. The line

double hw[200],quiz[200],ave[200];

tells the computer that there are 200 variables with names

hw[0],hw[1],hw[2], ... hw[199];

and similarly for quiz and ave.

Important: Note that C begins counting from zero, so the names begin hw[0] and end
hw[199] rather than hw[1] and hw[200].

4

[3] Type in the following program:

#include <stdio.h>

#include <math.h>

int main(void)

{

int i,x[20];

for (i=0; i<20; i=i+1)

{

x[i]=i*i;

}

for (i=1; i<20; i=i+1)

{

printf("\n%6i %10i",i,x[i]);

}

fprintf(stdout,"\n");

return 0;

}

This code defines the array x, and tells the computer it has twenty elements. Then, in the
first loop, the code fills the element x[i] with the square of i. The second loop prints out the
values of i and x[i]. Compile and run your code and see that it works.

[4] The program below puts all the values of factorial into an array

#include <stdio.h>

#include <math.h>

int main(void)

{

int j;

long int temp,fact[20];

temp=1;

for (j=1; j<20; j=j+1)

{

temp=temp*j;

fact[j]=temp;

}

for (j=1; j<20; j=j+1)

{

printf("\n %10d %20ld",j,fact[j]);

}

printf("\n");

return 0;

}

5

Type it in, compile and run it, and see that it works. The code illustrates another useful
aspect of arrays. They allow us to save a bunch of values for future use instead of recomputing
them all the time.

Important: Up to now when we used ‘printf’ for an integer we used %i. It is also okay to
use %d, and I have done that above. To print a long int, one uses %ld. Remember too that
the ‘10’ in %10d tells the computer how much space to allocate for the number to be printed.
This allows for prettier formatting. (Compare the output of the code above to one without
the numbers to specify the space for printing.)

[5] As we have seen, to do molecular dynamics, you only need to keep track of the present
value of the position and velocity and update them many times in a loop. But suppose for
some reason you wanted to save the trajectory for all the time steps. Arrays let you do that.
Type in this code, compile, and run it:

#include <stdio.h>

#include <math.h>

int main()

{

double x[20000],v[20000],k,m,dt,a,t=0.;

int i,N;

printf("\nEnter k,m,dt,N ");

scanf("%lf %lf %lf %i",&k,&m,&dt,&N);

x[0]=5.0;

v[0]=0.0;

for (i=0; i<N+1; i=i+1)

{

x[i+1]=x[i]+v[i]*dt;

a=-k*x[i+1]/m;

v[i+1]=v[i]+a*dt;

t=t+dt;

}

printf("\nEnter a time step at which you want to know");

printf("\nthe position and velocity: ");

scanf("%d",&i);

printf("\n The position at step %5i is %8.4lf",i,x[i]);

printf("\n The velocity at step %5i is %8.4lf\n ",i,v[i]);

return 0;

}

As you can see, because the trajectory is stored in the array x[] you can go back and examine
the position at any time step you want.

6

[HW4-6] Explain carefully what the lines

x[i+1]=x[i]+v[i]*dt;

a=-k*x[i+1]/m;

v[i+1]=v[i]+a*dt;

are doing.

[HW4-7] Run the code with these values:

Enter k,m,dt,N 2 .5 .001 10000

Enter a time step at which you want to know

the position and velocity: 785

What do you get for the position and velocity? Explain why those values make sense. Run
the code for these values:

Enter k,m,dt,N 2 .5 .001 40000

What happens? Why?

7

