
This content is protected and may not be shared, uploaded, or distributed.

Physics 40: Laboratory Two
Thursday, April 2, 2020

Today’s Goal: Review and Continue examples of very simple C programs.

Make sure you develop an understanding of what you are doing, not just typing codes in!

[0A] Review of key C language elements from Lab 1.

#include <stdio.h>

#include <math.h>

** headers which include standard input and output; math operations: +-*/

int main()

{

return 0;

}

** delineate beginning and ending of program (or more generally any function)

double x,y;

int j,k;

** discussion of base 2

printf("\n Enter x\n");

** \n for new line

scanf("%lf",&x)

scanf("%i",&j)

** must tell scanf the type of variable being read in

** C++ vs C

for (j=0;j<20;j=j+2)

{

}

** for loop;

** j=0 gives initial value of j;

** execution of all lines between { and } continues until j<20 violated.

* j increases by 2 with each pass through the loop.

** don’t put a semicolon after for: (j=0;j<20;j=j+2); is very bad!

do

{

}while(j>0);

** Another type of loop. Execute commands between { and } as long

** as the statement inside the while() is true.

1

if (x==y)

{

}

** Execute commands between { and } if statement is true.

** == is ‘logical equals’

** != is ‘logical not equals’

** && is ‘logical and’

** || is ‘logical or’

if (x<y)

{

}

else

{

}

** A variation on the most simple ‘if’ statement.

[0B] Review of steps in creating a program

Use editor (notepad,...) to type in program
Give the file a useful name, eg add.c
Compile the code (deal with any errors): gcc add.c
Default name of executable is add.exe
Rename the executable: ren a.exe add.e
Or name it while compiling: gcc add.c -o add.e

Pros and cons of an integrated development environment (IDE) like “Visual Studio”:
Built in compiler; initializes some code elements automatically; color
Can be (very) slow!

[1] How fast are computers?

Typical CPU is 3 GHz (gigahertz) = 3 x 109 sec−1. Roughly speaking this means you can
do 3 x 109 arithmetical operations (addition, subtraction, multiplication, division · · ·) each
second. When you write more complicated codes, it is a very good habit to estimate the
number of operations needed to run the code so you can make a rough guess at the execution
time. Obviously this has not been an issue for us so far, since our codes have been doing just
a handful of operations.

[2] Geometric and arithmetic series. More on S = S + x.

2

[3] Type in this code which solves the quadratic equation:

#include <stdio.h>

#include <math.h>

int main()

{

double a,b,c,root1,root2;

printf(" Please enter a,b, and c \n");

scanf("%lf %lf %lf",&a,&b,&c);

root1 = (-b + sqrt(b*b-4.*a*c)) / (2.*a);

root2 = (-b - sqrt(b*b-4.*a*c)) / (2.*a);

printf("\n First root is %lf \n",root1);

printf("\n Second root is %lf \n",root2);

return 0;

}

You will need to compile with gcc geom.c -lm
The -lm links your code to the math libraries which includes sqrt, exp, cos, log, · · · . (The
header <math.h> only tells the computer about the four elementary math operations: ad-
dition, subtraction, multiplication, division.)
What’s ‘bad’ about this code?
Why ‘(2. ∗ a)’ and not ‘2. ∗ a’ ?

[4] Type in this improved code to solve the quadratic equation:

#include <stdio.h>

#include <math.h>

int main()

{

double a,b,c,root1,root2;

printf(" Please enter a,b, and c \n");

scanf("%lf %lf %lf",&a,&b,&c);

if (b*b-4.*a*c>0)

{

root1 = (-b + sqrt(b*b-4.*a*c)) / (2.*a);

root2 = (-b - sqrt(b*b-4.*a*c)) / (2.*a);

printf("\n First root is %lf ",root1);

printf("\n Second root is %lf ",root2);

}

else

{

printf("\n Discriminant is negative! No roots!");

}

printf("\n ");

return 0;

}

3

[5] Type in a code to sum a geometric series:

#include <stdio.h>

#include <math.h>

int main()

{

double a,sum;

int j,N;

printf("\nEnter a\n");

scanf("%lf",&a);

printf("Enter N\n");

scanf("%i",&N);

printf(" j sum ");

sum=0.;

for (j=0; j<N; j=j+1)

{

sum=sum+pow(a,j);

printf("\n %i %12.6lf ",j,sum);

}

return 0;

}

If you compile with
gcc geom.c
something goes wrong. Can you fix it? Hint, see the instructions for [3].

[6] Type in a code to sum an arithmetic series:

#include <stdio.h>

#include <math.h>

int main()

{

int sum=0;

int j, N;

printf("Enter N");

printf("\n");

scanf("%i",&N);

for (j=0; j<N+1; j=j+1)

{

sum=sum+j;

}

printf("the sum is %30i \n",sum);

return 0;

}

4

[7] Write a code for the Taylor’s series for the exponential:

#include <stdio.h>

#include <math.h>

int main(void)

{

int j,N;

long int fact;

double x,sum;

printf("Enter N \n");

printf("\n");

scanf("%i",&N);

printf("Enter x\n");

scanf("%lf",&x);

sum=1.;

fact=1;

for (j=1; j<N; j=j+1)

{

fact=fact*j;

sum=sum+pow(x,j)/fact;

printf("\n %i %lf",j,sum);

}

printf("\n");

return 0;

}

Run your code for x = 0.6 and N = 10. Compare to the value you get for e0.6 using a
calculator. Run your code for x = 2.4 and N = 10. Compare to the value you get for e2.4

using a calculator. Run your code for x = 5.7 and N = 10. Compare to the value you get
for e5.7 using a calculator. Think about what’s going on and why.

5

[PS1-3] Modify the program in [4] to deal with all three possible values of the discriminant.
Write a short paragraph describing geometrically what those three cases correspond to. That
is, how is the parabola oriented with respect to the x and y axes in the three different cases?
(Drawing a picture is actually best!)

[PS1-4] Run your geometric series code for a = 0.3, N = 10 and for a = 0.8, N = 10. Write
a paragraph which derives the correct answer, and which gives the outputs of your code for
both cases. Does your code give the right answer? If not, explain what’s going wrong.

[PS1-5] Run your arithmetic series code for N = 10. Write a paragraph which derives the
correct answer, and which gives the output of your code.
Run your arithmetic series code for N = 60000. Is your output correct?
Run your arithmetic series code for N = 65535. Is your output correct?
Run your arithmetic series code for N = 65536. Is your output correct?
Figure out what’s special about the number 65536 and explain why your code breaks.

[PS1-6] (extra credit) Modify [7] to do the power series for cosine.

6

For those of you with previous coding experience, try these problems:

[1] Write a code to read in the slopes m1 and m2 and intercepts b1 and b2 of two lines. Find
their point of intersection. As in the quadratic equation code, there are some special cases
you need to consider. What do they correspond to geometrically?

[2a] Find the root (solution) of f(x) = ex − x − 5 = 0 by the ‘bisection’ method. That is,
read in two points a and b (with a < b) which bracket the root. Compute the value of f at
the midpoint c = (a + b)/2. If f(c) has the same sign as f(a) replace a by c. If f(c) has the
same sign as f(b) replace b by c. At each step the distance between a and b (between which
the root lives) decreases by a factor of 2. Continue this process to the desired accuracy.

[2b] Find the root (solution) of f(x) = ex − x − 5 = 0 by Newton’s method (from your
calculus course).

Which method is better, bisection or Newton?

7

