
This content is protected and may not be shared, uploaded, or distributed.

Physics 40: Laboratory Seventeen
Tuesday, May 26, 2020

Today’s Goals:
Molecular Dynamics in Python

[1] Below is version one of a Molecular Dynamics code for a mass on a spring (no damping)
in python. It really looks very similar to a C code: inputs for the number of time steps,
mass, initial position, etc followed by a loop to push the position and velocity forward. Note
the use of comment lines preceded by ‘#’. Although I have not emphasized it in this class,
commenting your code is really an essential part of good programming.

INPUTS

N =input(’Enter N : ’)

dt=input(’Enter dt: ’)

k =input(’Enter k : ’)

m =input(’Enter m : ’)

x =input(’Enter x0: ’)

v =input(’Enter v0: ’)

DO THE MD AND APPEND EACH NEW TIME, POSITION, VELOCITY TO ITS ARRAY

for i in range (1,N):

t=dt*i

x=x+v*dt

v=v-k*x*dt/m

print(t,x)

If you called this script “md1.py”, then (make sure you are in the same directory/folder
where your file is) you can run it by typing:
python ./md1.py

[2] This first version above writes to the screen. We might instead want the data to go to a
file. In some operating systems you can redirect output that goes to the screen to a file by
using ‘>’ as follows:
python ./md1.py > diadem
The problem with this is that the prompts for input also go to the file ‘diadem’ so you need
to remember them.

1

You can similarly use the ‘<’ symbol to handle your inputs. (This is convenient if you have
a lot of inputs.) Make a file (eg call it ‘ravenclaw’) containing six lines with the values of
N, dt, k,m, x0, v0:

1000

.01

3.0

0.75

5.0

0.0

And then type: python ./md1.py < ravenclaw > diadem
See if all that works in the environment you are using for your codes. It’s a useful quick trick
to sending output to a file, although not the most careful way to do it.

[3] Another way to write to a file is contained in this MD version two:

OPEN A FILE

scabbers= open("pigwidgeon.dat","w+")

INPUTS

N =input(’Enter N : \n’)

dt=input(’Enter dt: \n’)

k =input(’Enter k : \n’)

m =input(’Enter m : \n’)

x =input(’Enter x0: \n’)

v =input(’Enter v0: \n’)

DO THE MD

for i in range (1,N):

t=dt*i

x=x+v*dt

v=v-k*x*dt/m

scabbers.write("%f " % t)

scabbers.write("%f \n" % x)

CLOSE THE FILE

scabbers.close()

Now your data for t and x get written to the file ‘pigwidgeon.dat’. This is preferable to using
‘>’ because the prompts for the inputs still come to the screen. You could now use ‘google’
to plot the data. Fortunately, there is a better way!

2

[4] Plotting directly in python, step one: Let’s make a MD version which stores the trajectory
in an array. A good, quick on-line resource for learning python arrays is:

https://www.thegeekstuff.com/2013/08/python-array/

Read it carefully. It explains the syntax in the example below, and also alternate ways of
adding/removing data from an array.

THIS IS NEEDED TO USE ARRAYS IN PYTHON:

from array import *

INPUTS

N =input(’Enter N : \n’)

dt=input(’Enter dt: \n’)

k =input(’Enter k : \n’)

m =input(’Enter m : \n’)

x =input(’Enter x0: \n’)

v =input(’Enter v0: \n’)

START OFF TIME, POSITION, VELOCITY ARRAYS

time =array(’f’, [0.])

xsave=array(’f’,[x])

vsave=array(’f’,[v])

DO THE MD AND APPEND EACH NEW TIME, POSITION, VELOCITY TO ITS ARRAY

for i in range (1,N):

t=dt*i

x=x+v*dt

v=v-k*x*dt/m

time.append(t)

xsave.append(x)

vsave.append(v)

PRINT OUT TIME AND POSITION

for i in range (1,N):

print(time[i],xsave[i])

3

[5] Making a plot. A good, quick on-line resource for learning python plotting is:

https://matplotlib.org/users/pyplot_tutorial.html

Read it carefully. It explains the example below, as well as ways to modify your plots by
controlling the types of symbols used, line thickness and colors, titles, etc..

THIS IS NEEDED TO USE ARRAYS IN PYTHON:

from array import *

THIS IS NEEDED TO MAKE PLOTS IN PYTHON:

import matplotlib.pyplot as plt

INPUTS

N =input(’Enter N : \n’)

dt=input(’Enter dt: \n’)

k =input(’Enter k : \n’)

m =input(’Enter m : \n’)

x =input(’Enter x0: \n’)

v =input(’Enter v0: \n’)

START OFF TIME, POSITION, VELOCITY ARRAYS

time =array(’f’, [0.])

xsave=array(’f’,[x])

vsave=array(’f’,[v])

DO THE MD AND APPEND EACH NEW TIME, POSITION, VELOCITY TO ITS ARRAY

for i in range (1,N):

t=dt*i

x=x+v*dt

v=v-k*x*dt/m

time.append(t)

xsave.append(x)

vsave.append(v)

PRINT OUT TIME AND POSITION

for i in range (1,N):

print(time[i],xsave[i])

MAKE A PLOT

plt.plot(time, xsave)

plt.xlabel(’t’)

plt.ylabel(’x’)

plt.show()

4

[6] Making a fancier plot.

THIS IS NEEDED TO USE ARRAYS IN PYTHON:

from array import *

THIS IS NEEDED TO MAKE PLOTS IN PYTHON:

import matplotlib.pyplot as plt

INPUTS

N =input(’Enter N : \n’)

dt=input(’Enter dt: \n’)

k =input(’Enter k : \n’)

m =input(’Enter m : \n’)

x =input(’Enter x0: \n’)

v =input(’Enter v0: \n’)

START OFF TIME, POSITION, VELOCITY ARRAYS

time =array(’f’, [0.])

xsave=array(’f’,[x])

vsave=array(’f’,[v])

DO THE MD AND APPEND EACH NEW TIME, POSITION, VELOCITY TO ITS ARRAY

for i in range (1,N):

t=dt*i

x=x+v*dt

v=v-k*x*dt/m

time.append(t)

xsave.append(x)

vsave.append(v)

PRINT OUT TIME AND POSITION

for i in range (1,N):

print(time[i],xsave[i])

MAKE A PLOT

plt.figure(1)

plt.subplot(211)

plt.plot(time, xsave)

plt.xlabel(’t’)

plt.ylabel(’x’)

plt.subplot(212)

plt.plot(time, vsave)

plt.xlabel(’t’)

plt.ylabel(’v’)

plt.show()

5

[HW9-1] Compute the period of oscillation of a mass m = 3.7 kg attached to a spring of
spring constant k = 7400 N/m. Explain what a good choice of time step would be for this
problem. Run your MD program and make a plot showing that it gives the correct period.
Does it matter what initial position and velocity you use?

[HW9-2] Using energy conservation, compute the amplitude A (the maximum distance from
the origin) for a mass m = 0.2 kg on a spring k = 75 N/m if the initial position x0 = 0.1 m
and the initial velocity v0 = 1.4 m/s. Run your code and make a plot showing it is giving
the correct A. Similarly, use energy conservation to compute the maximum velocity vmax.
Run your code and make a plot showing it is giving the correct vmax.

[HW9-3] Write a python script which does projectile motion. Consider a ball thrown from
the top of the physics building y0 = 30 m at a velocity vx0 = 15 m/s, vy0 = 20 m/s. Using
equations from a prior physics course, compute the time before the ball hits the ground
(y = 0), the maximum height reached, and the distance from the base of the building where
the ball strikes. Make a set of four plots (using ‘subplot’) consisting of y vs t; vy vs t; x vs
t; and vx vs t. Show that your code agrees with your calculations.

6

