This content is protected and may not be shared, uploaded, or distributed.

Physics 40: Laboratory Thirteen

Tuesday, May 12, 2020

Goals:

Reminder on eigenvectors and eigenvalues. Eigenvalues in Classical Mechanics (normal modes). Eigenvalues in Quantum Mechanics (spin-1/2 matrices).

[1]

0	diagonalizing a matrix ome utilities used by jacobi.c rutil.c				
Here's how to use them:					
First, compile the different pieces:					
gcc -o jacobi_test.o -c jacobi_test.c gcc -o jacobi.o -c jacobi.c gcc -o nrutil.o -c nrutil.c					
The '-o' tells the compiler to create	object files with the indicated names.				
Then put everything together:					
gcc -o jacobi_test jacobi_test.o jacobi.o nrutil.o -lm					
Then run the program, which is called told the compiler to give it this spec	jacobi_test (again, the '-o' ial name instead of the default 'a.out')				
jacobi_test					
You can either input stuff from the screen: first the dimension of the					

You can either input stuff from the screen: first the dimension of the matrix, then the entries in each row, with each entry separated by a space and the rows separated by a carriage return, or you can enter the same information into a file, and then tell the program to look in the file for the input via the command '< input.txt'. I believe it is easier to use the latter approach.

jacobi_test < input.txt							
Here's what should happen:							
<pre>\$ jacobi_test dimension of the matrix: 5 enter a 5 x 5 matrix (separated by space): 3 0 1 0 .5 0 4 1 0 .1 1 1 5 .4 .2 0 0 .4 2 1 .5 .1 .2 1 3</pre>							
0.000 1.000 0.000	coblem f 0.000 4.000 1.000 0.000 0.100	1.000 1.000 5.000 0.400	0.000 0.000 0.400 2.000	0.100 0.200 1.000			
number of Jacobi applied: 49							
eigenval 2.523	lues: 3.834	5.982	1.280	3.382			
0.257 -0.376 -0.346	ctors: -0.391 0.689 -0.062 -0.301 -0.528	0.426 0.827 0.124	0.071 -0.140 0.804	0.523 -0.388 0.357			

[HW7-1] Diagonalize the matrix

$$k = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

"by hand". Now use "jacobi" and verify you get the same answers.

[HW7-2] The matrices associated with the measurement of the components of the spin of an electron in the x, y, z directions are:

$$S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \qquad \qquad S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i\\ i & 0 \end{bmatrix} \qquad \qquad S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

Here $\hbar = 1.055 \times 10^{-34}$ is Planck's constant. What values can you get if you are in the lab and you measure S_x ? How about S_y and S_z ?

[HW7-3] Write a code which prints the dynamical matrix for a chain of N masses connected by springs k to a file. Write it in a way that "jacobi" can read it in: each line contains all the matrix elements in that row. Have the parameters N and k be inputs to the code.

One approach is to follow the steps:

Declare some big matrix, eg dynmatrix[128][128].

Fill the entire matrix with zeros (use two nested loops).

Set the diagonal entries dynmatrix[i][i] to 2k (just one loop needed).

Set the elements dynmatrix[i][i+1] to -k (just one loop needed).

Set the elements dynmatrix[i][i-1] to -k (just one loop needed).

In the last two steps you will need to be careful with the first and last rows!

[HW7-4] Run your code from HW7-3 for k = 3 and N = 8 to get the dynamical matrix into a file. Then run "jacobi" to diagonalize. What eigenvalues do you get?