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Abstract

The crossing and anticrossing properties of the energies and widths of two unbound levels under the influence of a
symmetrical complex interaction are investigated. It is found that a sufficiently large variation of the difference of the
‘‘unperturbed’’ energies or of the widths leads always to a crossing of either the energies or the widths of the ‘‘perturbed’’
system. A particularly interesting result is that for a real off diagonal interaction there is a joint crossing of the
‘‘unperturbed’’ energies and of either the ‘‘perturbed’’ energies or the ‘‘perturbed’’ widths. q 1999 Elsevier Science B.V.
All rights reserved.

PACS: 03.65.-w; 03.80.q r; 32.80.Bx; 21.10.-k

The two level system is a fruitful tool in physics
w xand has many applications 1–5 . One usually con-

siders, the properties of a system of two bound
states. It is of interest to extend this study from

w xbound states to unbound states 6–15 . Interesting
examples of unbound two level systems are e.g.:

p q 8 w x1. The I s2 , Ts1, Ts0 doublet in Be 16,17 .
2. The r–v T s 1, T s 0 doublet of mesons

w x9,18,19 .
w x3. Doublets of resonance’s in cavities 20 .

) E-mail: brentano@ikp.uni-koeln.de
1 Present address: SAP AG, Neurottstr. 16, 69190 Waldorf,

Germany.

This paper discusses the crossing and anticrossing
of energies and widths of the two level system for
unbound levels. For the system of two bound states it
is known that the difference D EsE yE of the1 2

energies E and E can not vanish if the off diago-1 2

nal matrix element of the interaction does not vanish
w x1–6 . In short: the energies of two bound states,
anticross for a non vanishing offdiagonal interaction:
n / 0. This statement is a special case of a theorem

w xof Wigner and von Neumann 1 .
In the present paper the crossing and anticrossing

of unbound levels is studied. The energy ´ of an
unbound level is in general a complex number:

´sEy ir2 G 1Ž .
Here EsRe ´ is the real energy and Gsy2 Im ´

is the width of the unbound state. The complex
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energy difference ´ y´ of two unbound states is1 2

thus also in general a complex number

´ y´ sDEy ir2 DG 2Ž .1 2

There are different possible cases of crossing and
of anticrossing in the unbound two level system
depending on the vanishing or non vanishing of the
real part D E or of the imaginary part y1r2D G of
the complex energy difference ´ y´ .1 2

We mention that there have been several works in
which the concept of energy repulsion and width
attraction was discussed for a system of two un-

w xbound states 6–12,17 . This problem is related to
but different from the crossing and anticrossing rela-
tion which will be discussed here. Furthermore the
crossing and anticrossing relations are derived here
for the general case of a 2=2 matrix with a sym-
metrical complex off diagonal interaction whereas
the energy repulsion width attraction relations were
derived previously only for an off diagonal interac-
tion which was either real or purely imaginary.

Before the crossing problem is discussed in detail,
the meaning of the effective Hamiltonian for un-
bound states will be clarified. A proper description
of the unbound system is done in the frame of an
S-matrix. We can define an effective Hamiltonian H
from the propagator of the S-matrix. A convenient
form of an unitary S-matrix which exhibits the prop-
agator has been given by Mahaux and Weidenmuller¨

w xin their book 21 and was also used by other authors
w xe.g.: 13–15,22–25 . Time reversal invariance is as-

sumed and therefore the S-matrix is symmetric. For
a system with two unbound states this leads to the

w xfollowing representation of the S-matrix 21 :

y1 t qS E sU 1y iW D E W U , 3Ž . Ž . Ž .� 4
D E sEd yHŽ . nm nm nm

sEd yh q1r2i W tW , 4Ž . Ž .nmnm nm

with

) ) w xh sh ,W sW and n ,mg 1,2 5Ž .nm nm cn cn

Here W is the M=2 matrix of the decay ampli-cn

tudes which couple the M channels to the 2 levels. U
is a unitary matrix, which describes the background.

From time reversal invariance one obtains further
Ž t .that the width matrix G s W W and the en-nm nm

ergy matrix h are real and symmetric 2=2 matri-nm

ces. The width matrix GsW tW is a positive
semidefinite matrix. Combining the energy matrix
h with the width matrix G one obtains thenm nm

effective Hamiltonian matrix: Hshy ir2 G .
One can write the effective symmetric Hamilto-

Ž .nian H in the form of Eq. 6 .

H H11 12
Hs ž /H H21 22

E0 y ir2 G 0 ny ir2v1 1
s 6Ž .

0 0ž /ny ir2v DE y ir2 G1 1

It is further assumed for simplicity that the effective
Hamiltonian H is energy independent. This is a
reasonable assumption far from thresholds.

This form allows the standard decomposition of
H into an ‘‘unperturbed’’ effective Hamiltonian H 0

and a complex off diagonal interaction V:

´ 0 0 ny ir2v010H s s ž /ž /0 ´ ny ir2v 002

7Ž .

The special form ny ir2 v of writing the off
diagonal complex interaction matrix element is used
in order to simplify the relations below. The poles ´1

and ´ of the S-matrix are identical with the com-2

plex eigenenergies of the effective Hamiltonian and
Ž .are given by the solutions of Eq. 8 :

det ´d yH s0 8Ž . Ž .nm nm

from which the well-known expressions for the com-
plex energies of the two level system are obtained
w x1–6 :

´ s1r2 H qHŽ .1,2 11 22

1r22
"1r2 H yH q4H H 9Ž . Ž .11 22 12 21
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Ž .From Eq. 9 one obtains the square of the differ-
Ž .2ence of the complex energies ´ y´ :1 2

22 0 0´ y´ s ´ y´Ž . Ž .1 2 1 2

2q4 ny ir2v s Ay i B 10Ž . Ž .
Ž .In order to discuss Eq. 10 it is useful to consider

the differences of the energies D E and of the widths
D G of the two ‘‘perturbed’’ states and of D E0 and
D G 0 of the ‘‘unperturbed’’ states. By decomposing

Ž .Eq. 10 into its real part: A and its imaginary part:
Ž . Ž .yB one obtains Eqs. 11a and 11b :

2 22 2 0 0DE y1r4 DG s DE y1r4 DGŽ . Ž . Ž . Ž .
q4 n 2 y1r4v 2Ž .

sA 11aŽ .
DEDG s DE0DG 0 q4nvsB 11bŽ . Ž . Ž .

These equations are the basis of the following dis-
cussions of the crossing and anticrossing of the
levels. One notes that the functional dependence of
the quantities A and B on the parameters of the

Ž . Ž .Hamiltonian H of Eqs. 2 and 6 are given by Eqs.
Ž . Ž .11a and 11b .

To begin the discussion we first consider the full
complex energy crossing i.e. the case: ´ s´ . One1 2

Ž .finds the Eq. 12 :

´ s´ mAs0 and Bs0 12Ž .1 2

Ž .Eq. 12 gives the conditions for full complex energy
crossing. Such crossing is possible in the case of
unbound levels also for a nonvanishing interaction

w xny ir2v/0. This was noted before 8–12 . The
reason is, that a complex symmetrical 2=2 matrix
has more parameters than the real symmetrical 2=2
matrix and these many parameters make it possible
to fulfil the two relations As0 and Bs0 also for a
non vanishing off diagonal interaction. The complex
energy crossing has been discussed in great detail by

w xMondragon and Hernandez 11 .´ ´
We now discuss the partial crossing which is

particularly interesting for the unbound system.
Namely we consider that either the energy difference
D E, or the width difference D G vanish. One finds
in both cases that the parameter B must vanish. One

Ž .obtains Eq. 13 :

Bs0m DEDG s0mDEs0 or DGs0 13Ž . Ž .
Ž .Eq. 13 contains the logical ‘‘or’’, which includes of

course the possibility that D E and D G vanish si-
Ž .multaneously as was discussed above. Eq. 13 is a

crossing anticrossing relation. One finds further that
the sign of A specifies whether there is energy

Ž . Ž .crossing D Es0 or width crossing D Gs0 as is
Ž . Ž .shown in Eqs. 14a and 14b :

A)0 and Bs0mDE/0 and DGs0 14aŽ .

A-0 and Bs0mDEs0 and DG/0 14bŽ .

Ž .Relation 14a is interesting. It states that for Bs0
energy anticrossing implies width crossing. For
bound states the relation is trivial because the widths
vanish everywhere. The relation is nontrivial for

Ž .unbound states, however. Eq. 11b implies that by
varying D E0 or D G 0 in a sufficiently large range
while keeping the other parameters of H constant
one can make Bs0. Thus in cases where D E0 or
D G 0 can be varied in the experiment in a suffi-
ciently large range one finds either energy or width
crossing. The width crossing relation is a rather
general, somewhat surprising and interesting result.
The conditions under which it holds can be realized
in experiments.

Particularly simple and strong results are obtained
for a special off diagonal interaction for which nvs
0. That is for either a real or a purely imaginary off
diagonal interaction. One finds:

nvs0 and Bs0m DEDG s DE0DG 0 s0Ž . Ž .
15Ž .

Thus for this special interaction the ‘‘perturbed’’
widths or energies will cross at the crossing point of
the ‘‘unperturbed’’ widths or energies. The question
whether the ‘‘perturbed’’ widths or energies cross
depends again on the sign of A as is shown in Eqs.
Ž . Ž . Ž . Ž .11a and 11b . One finds Eqs. 16a and 16b :

< < < 0 < 02n ) 1r2 DG and DE s0 and vs0

EDE
´DGs0 and and DE/0 16aŽ .0EDE

< < < 0 < 02n - 1r2 DG and DE s0 and vs0

EDG
´DEs0 and and DG/0 16bŽ .0EDE
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Ž . Ž .In Eqs. 16a and 16b all quantities of the ‘‘per-
turbed’’ system as e.g. D E, D G , treated as functions
of the parameter D E are to be taken at the value0

D E0 s0. One can also obtain corresponding rela-
tions for a variation of the parameter D G . The0

0 0 Ž .derivatives EDErEDE and EDGrEDE in Eqs. 16a
Ž . Ž . Ž .and 16b are obtained from Eqs. 11a and 11b by

Ž .keeping all parameters D G ,n ,v constant except0
Ž .D E .The relation 16a implies that for a sufficiently0

< < < 0 <large real interaction with 2n ) 1r2 D G the
three quantities D E0, D G and EDGrEDE0 will
vanish jointly wheras D E does not vanish for
D E0 s0.

Ž .Eq. 16b gives the conditions for a joint vanish-
ing of the three quantities D E , D E and EDGrEDE0

0

whereas D G does not vanish for D E0 s0. One
Ž .notes that Eq. 16a is well known for boundstates. It

Ž . Žshows that the difference of the energies D E s E1
.yE of the two states has an extremal value at the2

Ž 0crossing point of the ‘‘unperturbed’’ energies D E
.s0 .

It should be stressed that the joint crossing of the
three quantities is found for purely real or imaginary
interactions. For a general complex interaction the
three quantities will not vanish jointly in general.

It is useful to derive the width crossing relation
directly in a simple model. The electromagnetic de-
cay of a system of two interacting bound states c1

and c to the groundstate c is considered in2 g

perturbation theory. The system is described by the
Ž .Hamiltonian of Eq. 6 with vs0 and vanishing

‘‘unperturbed’’ widths: G 1 sG 0 s0. One assumes0 2

that the two states c , c decay by electromagnetic1 2

E2-transitions to the ‘‘unperturbed’’ groundstate
< 0: < :c s c . Thus one obtains the transition decayg g

widths G t and G t in perturbation theory by Eq.1 2
Ž .17 :

t <² 0 < < : < 2 2 t <² 0 < < : < 2 2G s c E2 c a , G s c E2 c a1 g g 1 2 g g 2

17Ž .

where a is a constant. We use the same relations
also for the unperturbed case. One assumes in this
model for simplicity that in the ‘‘unperturbed’’ sys-
tem H 0 there is only one nonvanishing transition
width G t 0 /0, G t 0 s0. With these assumptions1 g 2 g

one can calculate the difference of the widths: D G t s
G t yG t as a function of the parameters D E0Ž .1 g 2 g

and n . D G t is directly related to the difference of
the amplitudes a 2 and b 2 of the expansion of the
‘‘perturbed’’ states into the ‘‘unperturbed’’ states

Ž .which is given in Eq. 18 :

c sac 0 qbc 0 , c sybc 0 qac 0 18Ž .1 1 2 2 1 2

t Ž 2 2 .One finds DG s a yb . This shows the origin
of width crossing. Namely the amplitudes a 2 and
b 2 cross at the parameter value D E0 s0.

This model gives an intuitive explanation for
width crossing in terms of a complete mixing of the
two states. This model is valid of course only for
very small widths, when perturbation theory applies.
We do not know a similarly intuitive explanation for
energy crossing.

Summing up the anticrossing relation for the ener-
gies in a system of two bound states is extended to
crossing–anticrossing relations for the energies and
widths of a system of two unbound states. Since the
energies of the unbound states are complex numbers
there is a rich physical scenario for crossing and
anticrossing of the real or imaginary parts of the
complex energies.

A particularly interesting result is that in a system
of two unbound states with an off diagonal interac-
tion there is a value of the difference of the real
‘‘unperturbed’’ energies D E for which the ‘‘per-0

turbed’’ energies or the ‘‘perturbed’’ widths cross.
An even stronger result is obtained for a sufficiently
strong real interaction. For such an interaction one
finds that the three quantities D E0, D G and EDEr
EDE0 will vanish jointly.

This is a rather general result because the condi-
tions for which it holds are rather weak and can be
realized in experiments.

Finally we give an experimental example for
which the scenario of joint ‘‘unperturbed’’ energy
crossing: D E0 s0 and ‘‘perturbed’’ width crossing:
D Gs0 is at least approximately fullfilled. This ex-
ample is the famous doublet of Ips2q Ts0 and
Ts1 resonances in 8Be. These resonances were
studied both in experiment and in analysis in great

w xdetail, e.g. by Hinterberger et.al. 16 . They have
become one of the most completely studied exam-
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Žples of resonance doublets in nuclear physics see
w x.also references in 16 . We follow here an analysis

w x17 which used the same form of the S-matrix as is
used in the present paper.

The parameters ´ , ´ and ´ 0, ´ 0 and n ob-1 2 1 2
8 w xtained for the Be doublet in Ref. 17 are:

´ s 16722y ir2P108 keVŽ .1

´ s 17010y ir2P74 keVŽ .2

´ 0 s 16838y ir2P182 keVŽ .1

´ 0 s16893 keV2

ns148 keV

From these parameters one can find the parameters
D´ , D´ 0 and n . One finds:

D´ 0 s y55y ir2P182 keVŽ .
D´s y288y ir2P35 keVŽ .

Ž .As the interaction ns148 keV is real, Eq. 15
holds. This is indeed true: ( 288=35s55=182.
We note that although both D E and D G both do0

not vanish they are both rather small compared to
< < < <D E and D G respectively:0

< <DE s55 keV<288 keVsDE0

< < < <and DG s35 keV<182 keVs DG0

Thus although there is no true ‘‘perturbed’’ width
crossing in 8Be the system is near to such a crossing.

< < < <We also note that the interaction n is large: 2n s
< < Ž .298 keV)91 keVs 1r2 D G and thus Eq. 16a0

implies near ‘‘perturbed’’ width crossing as found in
the experiment. The two resonances in 8Be have also
been used as an example of a near complex energy

w xcrossing 12 .
Other applications may be found in atomic physics

or in microwave cavities. One can consider e.g. that
the energies of an atom are changed by a magnetic
field or one can consider a set of nearly identical
coupled microwave cavities in which the energies
widths and the interaction n of the individual cavi-

w xties can be separately varied 20,26 .
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