Iron-Chalcogenide Superconductors

HB Rhee Phy 242 June 3, 2009

Outline

Fe-chalcogenides vs. Fe-pnictides

Electronic structure calculations of undoped chalcogenides

Spin-density wave?

FeSe

FeTe

Electronic structure calculations of doped FeTe

Conclusion

LaFeAsO_{1-x} $F_x(T_c = 26 \text{ K})$

SmFeAsO_{1-x} $F_x(T_c = 55 \text{ K})$

LaFeAs_{1-x}Sb_xO_{1-x}F_x($T_c = 29$ K)

 $Ba_{1-x}K_xFe_2As_2(T_c = 38 K)$

 $Sr_{1-x}K_xFe_2As_2(T_c = 32 K)$

 $Li_{1-x}FeAs(T_c = 18 K)$

15 16 VA VIA

7 14.01 Nitrogen	8 16.00 Oxygen	
P 15 30.97 Phosphorus	\$ 16 32.07 Sulfur	
As 33 74.92 Arsenic	Se 34 78.96 Selenium	
Sb 51 121.76 Antimony	Te 52 127.60 Tellurium	
Bi 83 208.98 Bismuth	Po 84 (209) Polonium	
	7 14.01 Nitrogen P 15 30.97 Phosphorus AS 33 74.92 Arsenic Sb 51 121.76 Antimony Bi 83 208.98	7 14.01 Nitrogen P 15 30.97 Phosphorus AS 33 74.92 Arsenic Sb 51 121.76 Antimony Bi 83 208.98 16.00 Oxygen Sygen Scale 16.30 Oxygen Sulfur Selenium Te 52 127.60 Tellurium Po 84 (209)

 $FeSe_{1-x}(T_c = 8 \text{ K})$

 $FeTe_{1-x}S_{x}(T_{c} = 10 \text{ K})$

 $FeSe_{0.5}Te_{0.5} (T_c = 15 \text{ K})$

Many Similarities

Common square planar sheets of tetrahedrally coordinated Fe Fe²⁺

Neither can be understood in terms of standard el-ph theory

Fermi surface nesting whose nesting vector corresponds to the AFM ordering vector

Low carrier density, high DOS

Very similar band structures

Chalcogen vs. Pnictogen

Magnetic ordering observed experimentally is very different

Recent electronic structure calculations reveal topological differences

Fe-chalcogenides have the simplest crystal structure among Fe-based SCs

Fe-chalcogenides nontoxic

Undoped FeS, FeSe, FeTe

Fe *d* states dominate Fermi level

 E_f lies near bottom of a pseudogap

Spin-Density Wave

First seen in Cr

AFM ground state for which the density of conduction-electron spins is spatially modulated

Occurs at low T in anisotropic metals with large DOS at Fermi level so that a single nesting vector Q can map large areas of Fermi surface onto another

Development of a SDW causes modulation in the spin density with periodicity of $2\pi/Q$

The spatial modulation leads to a lowering of the energy, which opens an energy gap at the Fermi level

Condensation energy $\sim N(E_{\downarrow})\Delta$

Fig. 5.17. The electron dispersion ξ_k in the Hubbard model.

$$H = -\sum_{\langle ij \rangle, \alpha} t(c_{\alpha j}^{\dagger} c_{\alpha i} + h.c.) + U \sum_{i} n_{i}^{2}$$
$$\xi_{k} = -2t \left(\cos(k_{x}) + \cos(k_{y})\right)$$

<FS of Cr>

Half-filled band case (AFM) satisfies nesting vector $\mathbf{Q} = (\pi, \pi)$ Susceptibility $\chi(\mathbf{q})$ diverges at nesting vector

$$\chi(\mathbf{q}) = \sum_{\mathbf{k}} \frac{f_{\mathbf{k}} - f_{\mathbf{k} + \mathbf{q}}}{\varepsilon_{\mathbf{k} + \mathbf{q}} - \varepsilon_{\mathbf{k}}}$$

Similarly sized cylinders yield strong nesting at (π,π) point

FeSe

PbO-type structure (tet)

Structural phase transition at 70 K

Clean SC phase observed only in Sedeficient (?) FeSe

F. C. Hsu et al., Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008)

F. C. Hsu et al., Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008) Momentum transfer (10/nm)

SC transition very broad

Doesn't follow BCS at lower T

Stoichiometric FeTe not superconducting

Tet → ortho at 80 K

Structural phase transitions (tet → ortho)

FeTe_{0.92}: 80 K

 $FeTe_{0.9}S_{0.1}$: < 50 K

FeTe_{0.8}S_{0.2}: none

Nesting reduced via doping, pressurization

Suppression of phase transition key to produce SC

Y Mizuguchi *et al.*, Appl. Phys. Lett. **94**, 012503 (2009)

Neutron scattering reveals double-strip AFM ordering

Fe-doped calculations support this ordering

Double-stripe AFM ordering realized at $x \sim 0.068$ ($\sim 0.5 e^{-1}/u.c.$)

Spin ordering becomes incommensurate at $x \sim 0.141$

S. Li *et al.*, Phys. Rev. B **79**, 054503 (2009) M. J. Han and S. Y. Savrasov, arXiv:0903.2896v2 (2009)

 $(\pi, 0)$ nesting appears upon doping

 (π, π) nesting suppressed

Te *p*-bands hybridize with Fe *d*-bands

Band crossing observed near Fermi level

No band crossing across X

Summary

Mechanism for SC in Fe-based materials not fully established, but spin fluctuations may be associated with it

Chemical doping and pressurization can raise Tc

Clear association between SC and suppression of SDWs

Little Fe doping affects magnetic structure significantly

More study required to better understand systems