Mean Field Theory for d=1 Hubbard Model: AntiFerromagnetism

R. T. Scalettar (Dated: February 9, 2017)

Following up on the preceding note, here I show some results for MFT of the one-dimensional Hubbard model allowing for antiferromagnetism.

I. THE CODE

implicit none integer i,N,Ntot,istag real*8 t,U,tpin,k,ek,mstag real*8 rho, Umstag, Urho real*8 eaf,eaftot,lambdaminus INPUTS write (6,*) 'N,Ntot,t,U' read (5,*) N,Ntot,t,U write (36,*) Ntot/2+1 tpin=8.d0*datan(1.d0)/dfloat(N) rho=dfloat(Ntot)/dfloat(N) Urho=U*rho/2.d0 do 1000 istag=0,Ntot,2 mstag=dfloat(istag)/dfloat(N) Umstag=U*mstag/2.d0 eaftot=0.d0 do 200 i=-Ntot/4+1,Ntot/4k=tpin*dfloat(i) ek = -2.d0*t*dcos(k)lambdaminus=-dsqrt(ek*ek +Umstag*Umstag) 1 lambdaminus=lambdaminus+Urho eaftot=eaftot+lambdaminus 200 continue eaftot=2.d0*eaftot/dfloat(N) -U*(rho*rho-mstag*mstag)/4.d0 write (36,990) istag, eaftot 990 format(i6,f16.6) 1000 continue

С

$t=1 U=2 N=256 \rho=0.5$

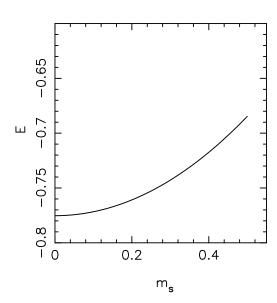


FIG. 1: Energy versus staggered magnetization of d=1Hubbard model at U/t = 2 and $\rho = \frac{1}{2}$ (128 electrons on an N = 256 site lattice).

staggered magnetization m_s is defined such that the up and down spin densities are $\rho_{\uparrow} = \rho + (-1)^i m_s$ and $\rho_{\downarrow} =$ $\rho - (-1)^{i} m_{s}$.

For U=2 the paramagnetic solution $m_s=0$ has lowest energy. We know too from the preceding note that m=0is the lowest of the ferromagnetic energies. Notice as a check on the codes that one can compare Figure 1 here with the preceding Figure 1 and see that $E(m_s = 0) =$ E(m = 0).

II. RESULTS FOR $\rho = \frac{1}{2}$

end

Here are results for one quarter filling, that is, a density $\rho = \rho_{\uparrow} + \rho_{\downarrow} = \frac{1}{2}$ electrons per site. (This is one quarter of the maximal density of two electrons per site.) The

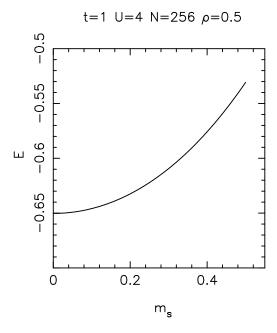
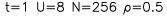


FIG. 2: Energy versus staggered magnetization of d=1 Hubbard model at U/t=4 and $\rho=\frac{1}{2}$ (128 electrons on an N=256 site lattice).

As before, we now start cranking up U. Figures 2 and 3 show the energy for U=4 and U=8 respectively. We see at U=8 that a nonzero m_s is better than zero m_s . However, the state is not actually antiferromagnetic because (Figure 4) the ferromagnetic energy is yet lower. (Again, check the fact that $E(m_s=0)=E(m=0)$. Really I should plot the ferromagnetic and antiferromagnetic data, Figures 3 and 4, on the same graph to make comparisons nicer.)



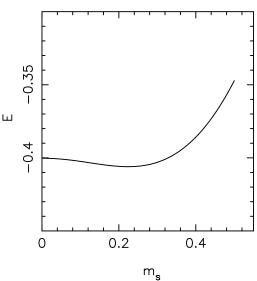


FIG. 3: Energy versus staggered magnetization of d=1 Hubbard model at U/t=8 and $\rho=\frac{1}{2}$ (128 electrons on an N=256 site lattice).

$$t=1$$
 U=8.0 N=256 ρ =0.5

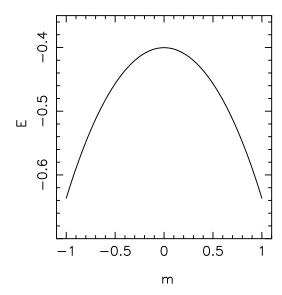


FIG. 4: Energy versus magnetization of d=1 Hubbard model at U/t=8 and $\rho=\frac{1}{2}$ (128 electrons on an N=256 site lattice).

III. RESULTS FOR $\rho = 1$

The preceding results suggest that at quarter filling, $\rho=\frac{1}{2}$, the d=1 Hubbard model is more prone to ferromagnetism than antiferromagnetism. Let's look at half-filling, $\rho=1$, where antiferromagnetism tends to be most stable. Sure enough, Figures 5 and 6 show the antiferro-

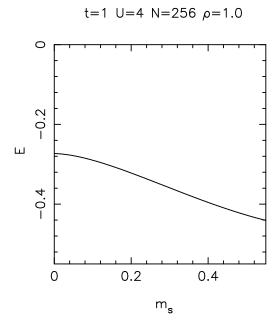


FIG. 5: Energy versus staggered magnetization of d=1 Hubbard model at U/t=4 and $\rho=1$ (256 electrons on an N=256 site lattice).

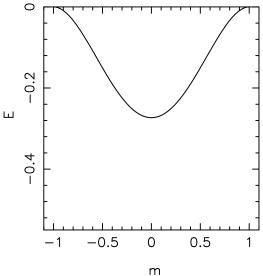


FIG. 6: Energy versus magnetization of d=1 Hubbard model at U/t=4 and $\rho=1$ (256 electrons on an N=256 site lattice).

magnetism is optimal (for U = 4). In fact, here, the best m_s is the biggest it can be.

IV. PHASE BOUNDARY

Our ultimate objective could be to analyze a bunch of energy curves, both ferro- and antiferromagnetic, for t=1 U=2,4,8,12,16 N=256

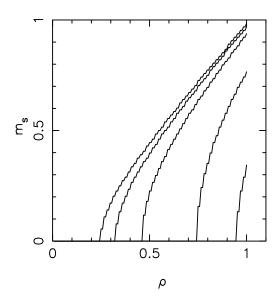


FIG. 7: Staggered magnetization m_s which minimizes the energy, as a function of density ρ for the d=1 Hubbard model on a N=256 site lattice. Curves are (left to right) U=16,12,8,4,2.

different densities ρ and couplings U and figure out the whole phase diagram in the $\rho-U$ plane. As a first step in this direction, Figure 7 shows the value of the staggered magnetization which minimizes the energy, as a function of density for different values of U. For small U=2, the energy is minimized in the paramagnetic phase $m_s=0$ until close to half filling $(\rho=1)$. As U increases, so does the regime of antiferromagnetism. For U=16 the optimal staggered magnetization becomes nonzero around $\rho=0.24$. So looking at the five points where m_s becomes nonzero begins to give us a sense of the antiferromagnetic phase boundary. We have to do similar analysis for the ferromagnetic case (and compare energies) to complete the picture.