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Here I show some results for Mean Field Theory for the energy of the one–dimensional Hubbard
model as a function of the magnetization m. This tells us the values of U/t and ρ for which the
system is unstable to ferromagnetism. I will deal with antiferromagnetism in a later note.

I. THE CODE

implicit none
integer i,N,Nup,Ndn,Ntot
real*8 t,U,tpin,k,ekup,ekdn,denup,dendn
real*8 efup,efdn,eftot

write (6,*) ’N,Ntot,t,U’
read (5,*) N,Ntot,t,U
tpin=8.d0*datan(1.d0)/dfloat(N)
do 1000 Nup=0,Ntot,2

Ndn=Ntot-Nup
denup=dfloat(Nup)/dfloat(N)
dendn=dfloat(Ndn)/dfloat(N)

efup=0.d0
efdn=0.d0
do 200 i=-N/2+1,N/2

k=tpin*dfloat(i)
if (i.ge.-Nup/2+1.and.i.le.Nup/2) then

ekup=-2.d0*t*dcos(k)+U*dendn
efup=efup+ekup

endif
if (i.ge.-Ndn/2+1.and.i.le.Ndn/2) then

ekdn=-2.d0*t*dcos(k)+U*denup
efdn=efdn+ekdn

endif
200 continue
eftot=(efup+efdn)/dfloat(N)-U*denup*dendn

write (36,990) Nup,Ndn,eftot
990 format(2i6,f16.6)

1000 continue

end

II. RESULTS FOR ρ = 1

2

Here are results for one quarter filling, that is, a density
ρ = ρ↑ + ρ↓ = 1

2
electrons per site. (This is one quarter

of the maximal density of two electrons per site.) The
magnetization m is defined such that m = (ρ↑−ρ↓)/(ρ↑+
ρ↓).
You see that at U/t = 2 the optimal energy is para-

FIG. 1: Energy versus magnetization of d = 1 Hubbard model
at U/t = 2 and ρ = 1

2
(128 electrons on an N = 256 site

lattice).

magnetic: the energy E is minimized at m = 0. This
is still the case at U/t = 4 (see next page), but the
energy of the spin polarized solutions (m nonzero) are
getting much closer to m = 0. (Note the energy scale.)
When U/t = 4.2 the energies for large |m| have started
to turn down and are lower than intermediate m, though
E(m = 0) is still lowest. U/t = 4.4 has just gone ferro-
magnetic.
Notice that the transition is first order. That is, as U/t

increases we jump suddenly from a minimum at m = 0 to
a minimum at m = ±1. Another possibility would have
been a second order transition in which the minimum at
m = 0 gradually shifts to largerm and partially polarized
solutions are best for a range of U/t. Without examin-
ing other MF solutions (like antiferromagnetic ones) we
cannot tell if this first order transition is ‘real’ or sim-
ply occurs because we have restricted to ferromagnetic
solutions and something even lower in energy is actually
winning.
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FIG. 2: Same as Fig. 1 except U/t = 4.

FIG. 3: Same as Fig. 1 except U/t = 4.2.

III. CONSISTENCY WITH STONER

CRITERION

In class we derived the Stoner Criterion for Ferromag-
netism UN(EF) > 1. For the d=1 Hubbard model we
can compute,

N(E) = 2
∑
k

δ(E − ǫk) = 2

∫
dk

2π
δ(E − ǫk) (1)

FIG. 4: Same as Fig. 1 except U/t = 4.4.

FIG. 5: Same as Fig. 1 except U/t = 6.

with ǫk = −2tcos(k). A simple calculation gives

N(E) =
1

π
√
4t2 − E2

. (2)

This is the density of states for a single spin species,
which is what was used in the Stoner criterion.

We also need the relation between the density ρ and
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the Fermi energy EF:

ρ = 2

∫ EF

−2t

dE N(E). (3)

I put in the factor of two for spin here, so that when
I plug in ρ I use the total density (including both spin
species). This yields,

ρ =
2

π
cos−1(

−E

2t
). (4)

You can check this latter relation obeys the expected
limits: ρ = 0 when EF = −2t, ρ = 1 when EF = 0, and
ρ = 2 when EF = +2t.
Putting these equations together, we can get the den-

sity of states at EF for a given filling:

N(ρ) =
1

2πt

1

sin(πρ/2)
(5)

For half-filling, ρ = 1 we see that N(ρ = 1) = 1

2πt
and

hence Ucrit = 2πt. For quarter-filling, ρ = 1

2
we see

that N(ρ = 1) = 1√
2πt

and hence Ucrit =
√
2πt = 4.44t.

This is in pretty good agreement with Figures 1–5 which
showed us that Ucrit was around 4.4t. I suspect that the
slight disagreement (Figure 4 suggests Ucrit a bit less than
4.4t while Stoner gives Ucrit a bit more than 4.4t) is due
to the fact that Figures 1-5 were run on N = 256 site
lattices. That is, I believe the small difference is likely a
finite size effect.

IV. PARTICLE-HOLE SYMMETRY

A lattice which can be divided into two distinct sub-
lattices A and B such that the only neighbors of sites
in A are sites in B and vice-versa are referred to as bi-
partite lattices. A two-dimensional square lattice is bi-
partite, but not a two-dimensional triangular lattice. A
one-dimensional linear chain is bipartite. I did not dis-
cuss this in class, but the Hubbard model on a a bipartite
lattice exhibits ‘particle-hole’ symmetry. This means all
physical properties at fillings ρ = 1+x and ρ = 1−x are
identical. We saw an example of this in all the preceding
figures where E(ρ = 1 − x) = E(ρ = 1 + x). The phase
diagram would then be symmetric about ρ = 1 as well.

The proof of particle-hole symmetry is simple. Do

the change of variables ci,σ → (−1)ic†
i,σ. This inter-

changes creation and destruction operators, hence the
name particle-hole transformation. Here (−1)i = 1 on
sites i in sublattice A (−1)i = −1 on sites i in sublat-
tice B. Check that the kinetic energy is unchanged by
this transformation. What is the role of the (−1)i fac-
tor? How does the bipartite lattice enter? How do the
anticommutation relations of fermion operators enter?
The potential energy is slightly more tricky. First note

how the number operator changes: ni,σ → (1− ni,σ). In
other words, empty sites and filled sites are exchanged
ni,σ = 0 ↔ ni,σ = 1. This of course also motivates
the name ‘particle-hole’ transformation. Second, notice
that one can rewrite the interaction and chemical poten-
tial terms in the Hubbard model (to within an irrelevant
overall constant) as:

U
∑
i

ni ↑ni ↓ − µ
∑
i

(ni ↑ + ni ↓) (6)

= U
∑
i

(ni ↑ −
1

2
)(ni ↓ −

1

2
)

−(µ− U/2)
∑
i

(ni ↑ + ni ↓).

We call this way of expressing the interaction the
‘particle-hole symmetric’ form. It is easy to see that
when the 1

2
factors are subtracted from the density, the

expression which U multiplies does not change under the
particle-hole transformation.
The other term with the shifted chemical potential does

change under the particle-hole transformation, but if its
coefficient is zero (µ = U/2) then the whole Hamilto-
nian H is invariant. This has many consequences for
expectation values of operators. The most simple one is
〈niσ〉 = 〈1− niσ〉 and hence 〈niσ〉 = 1

2
(as expected!)

It is also fairly easy to see finally that all physical prop-
erties at fillings ρ = 1 + x and ρ = 1 − x are identical,
our original claim.
There are many other beautiful symmetries which can

be uncovered by similar particle-hole transformations.
For example one can map the repulsive (U > 0) Hubbard
model onto the attractive (U < 0) Hubbard model. This
allows one to develop insight into charge density wave
and superconductivity in the attractive Hubbard model
from your knowledge of the behavior of magnetism in the
repulsive Hubbard model.


