PROBLEM SET 5 Due Friday December 13 Physics 240A-FALL 2019 - [1.] Consider a long thin wire of copper along the z-direction with length L=1 cm and a square cross section (width a is a few \mathring{A}). Treat the wire as a free electron gas, demanding that the wave function vanishes outside of the wire. Use periodic boundary conditions along the length of the wire. The electron density for copper is 8.49×10^{22} electrons/cm³. - a) Solve the Schrödinger equation for this geometry. - b) Which states are occupied at zero temperature? Qualitatively describe the dependence on the width a. - c) Calculate the maximum possible width a of the wire such that only the ground state in x and y directions is occupied. - d) Calculate the low-temperature specific heat for the case when only the ground state in x and y directions is occupied (algebraic answer in terms of a and the electron density OK). - [2.] Consider a metal at uniform temperature in a static uniform electric field E. An electron experiences a collision, and then, after a time t, a second collision. In the Drude model, energy is not conserved in a collision, for the mean speed of an electron emerging from a collision does not depend on the energy that the electron acquired from the field since the time of the preceding collision. - a) Show that the average energy lost to the ions in the second of two collisions separated by a time t is $(eEt)^2/2m$. (The average is over all directions in which the electron emerged from the first collision.) - b) Show that the average energy loss to the ions per electron per collision is $(eEt)^2/m$, and hence that the average energy loss per volume and time is σE^2 . Deduce that the power loss in a wire of length L and cross section A is I^2R , where I is the current flowing and R is the resistance of the wire. Hint: You will need to argue that the probability that the time interval between two successive collisions is in the range [t, t + dt] is $(dt/\tau) e^{t/\tau}$. [3.] Consider 2D electrons subject to a weak periodic potential $$U(x,y) = U_0 \left(\cos \frac{2\pi x}{a} + \cos \frac{2\pi y}{a} \right)$$ - a) Find the energy bands near the edges of the first Brillouin zone. (Hint: the edges of the Brillouin zone are the Bragg planes where the eigenstates are doubly degenerate.) Plot the bands and isoenergetic surfaces. - b) Repeat the analysis of part a) for regions near the corners of the first Brillouin zone, where there are four degenerate eigenstates. [4.] As we discussed in Problem Set #1, in the lattice of the CuO₂ planes of the cuprate superconductors, the copper atoms (blue) form a square array, and oxygen atoms (green) live between each near-neighbor pair of copper atoms. See Figure at right. Solve for the tight-binding energy levels of this lattice, assuming that electrons can only hop on the (red) bonds which link neighboring copper and oxygen atoms. The amazing feature of this problem is the presence of "flat bands": the electron energy is completely independent of the momentum for one of the three bands. [5.] Compute the tight-binding bands for the hexagonal (honeycomb) lattice. You need to combine the unpleasantness of non-orthogonal axes of the triangular lattice done in class with having two atoms per unit cell. Optional: Just as you did in Problem Set #4, compute (numerically) the density of states N(E). You will find that, although there is no gap, N(E) vanishes linearly at the 'Dirac point' at E = 0. This is the remarkable feature of graphene. [6.] Problem 8-1 from Kittel (which I reproduce on the next four pages). # **PROBLEMS** #### 1. Periodic Potentials in One Dimension The general analysis of electronic levels in a periodic potential, independent of the detailed features of that potential, can be carried considerably further in one dimension. Although the one-dimensional case is in many respects atypical (there is no need for a concept of a Fermi surface) or misleading (the possibility—indeed, in two and three dimensions the likelihood—of band overlap disappears), it is nevertheless reassuring to see some of the features of three-dimensional band structure we shall describe through approximate calculations, in Chapters 9, 10, and 11, emerging from an exact treatment in one dimension. Consider, then, a one-dimensional periodic potential U(x) (Figure 8.4). It is convenient to view the ions as residing at the minima of U, which we take to define the zero of energy. We choose to view the periodic potential as a superposition of potential barriers v(x) of width a, centered at the points $x = \pm na$ (Figure 8.5): $$U(x) = \sum_{n=-\infty}^{\infty} v(x - na).$$ (8.64) # Figure 8.4 A one-dimensional periodic potential U(x). Note that the ions occupy the positions of a Bravais lattice of lattice constant a. It is convenient to take these points as having coordinates $(n + \frac{1}{2})a$, and to choose the zero of potential to occur at the position of the ion. ## Figure 8.5 Illustrating particles incident from the left (a) and right (b) on a single one of the barriers separating neighboring ions in the periodic potential of Figure 8.4. The incident, transmitted, and reflected waves are indicated by arrows along the direction of propagation, proportional to the corresponding amplitudes. The term v(x - na) represents the potential barrier against an electron tunneling between the ions on opposite sides of the point na. For simplicity we assume that v(x) = v(-x) (the one-dimensional analogue of the inversion symmetry we assumed above), but we make no other assumptions about v, so the form of the periodic potential U is quite general. The band structure of the one-dimensional solid can be expressed quite simply in terms of the properties of an electron in the presence of a single-barrier potential v(x). Consider therefore an electron incident from the left on the potential barrier v(x) with energy³³ $\varepsilon = h^2 K^2/2m$. Since v(x) = 0 when $|x| \ge a/2$, in these regions the wave function $\psi_I(x)$ will have the form $$\psi_{l}(x) = e^{iKx} + re^{-iKx}, \qquad x \leqslant -\frac{a}{2},$$ $$= te^{iKx}, \qquad x \geqslant \frac{a}{2}.$$ (8.65) This is illustrated schematically in Figure 8.5a. The transmission and reflection coefficients t and r give the probability amplitude that the electron will tunnel through or be reflected from the barrier; they depend on the incident wave vector K in a manner determined by the detailed features of the barrier potential v. However, one can deduce many properties of the band structure of the periodic potential U by appealing only to very general properties of t and r. Because v is even, $\psi_r(x) = \psi_I(-x)$ is also a solution to the Schrödinger equation with energy t. From (8.65) it follows that t0, has the form $$\psi_r(x) = te^{-iKx}, \qquad x \leqslant -\frac{a}{2},$$ $$= e^{-iKx} + re^{iKx}, \qquad x \geqslant \frac{a}{2}.$$ (8.66) Evidently this describes a particle incident on the barrier from the right, as depicted in Figure 8.5b. Since ψ_l and ψ_r are two independent solutions to the single-barrier Schrödinger equation with the same energy, any other solution with that energy will be a linear combination³⁴ of these two: $\psi = A\psi_l + B\psi_r$. In particular, since the crystal Hamiltonian is identical to that for a single ion in the region $-a/2 \le x \le a/2$, any solution to the crystal Schrödinger equation with energy ε must be a linear combination of ψ_l and ψ_r in that region: $$\psi(x) = A\psi_1(x) + B\psi_r(x), \qquad -\frac{a}{2} \le x \le \frac{a}{2}.$$ (8.67) Now Bloch's theorem asserts that ψ can be chosen to satisfy $$\psi(x+a)=e^{ika}\psi(x), \tag{8.68}$$ for suitable k. Differentiating (8.68) we also find that $\psi' = d\psi/dx$ satisfies $$\psi'(x + a) = e^{ika}\psi'(x).$$ (8.69) (a) By imposing the conditions (8.68) and (8.69) at x = -a/2, and using (8.65) to (8.67), show that the energy of the Bloch electron is related to its wave vector k by: $$\cos ka = \frac{t^2 - r^2}{2t} e^{iKa} + \frac{1}{2t} e^{-iKa}, \qquad \varepsilon = \frac{\hbar^2 K^2}{2m}.$$ (8.70) Verify that this gives the right answer in the free electron case ($v \equiv 0$). ng between the (-x) (the one-make no other etailed features the one-dimenrmi surface) or of band overlap nensional band and 11, emerging venient to view rgy. We choose h a, centered at sional periodic he positions of tice of lattice oints as having $1 + \frac{1}{2}a$, and to ro of potential he position of irticles incident a) and right (b) ne of the bar- ng neighboring tiodic potential . The incident, and reflected dicated by ar- ne direction of proportional to ending ampli- is convenient (8.64) ³³ Note: in this problem K is a continuous variable and has nothing to do with the reciprocal lattice. ³⁴ A special case of the general theorem that there are n independent solutions to an nth-order linear differential equation. ### 148 Chapter 8 Electron Levels in a Periodic Potential Equation (8.70) is more informative when one supplies a little more information about the transmission and reflection coefficients. We write the complex number t in terms of its magnitude and phase: $$t = |t| e^{i\delta}. ag{8.71}$$ The real number δ is known as the phase shift, since it specifies the change in phase of the transmitted wave relative to the incident one. Electron conservation requires that the probability of transmission plus the probability of reflection be unity: $$1 = |t|^2 + |r|^2. (8.72)$$ This, and some other useful information, can be proved as follows. Let ϕ_1 and ϕ_2 be any two solutions to the one-barrier Schrödinger equation with the same energy: $$-\frac{\hbar^2}{2m}\phi_i'' + v\phi_i = \frac{\hbar^2 K^2}{2m}\phi_i, \qquad i = 1, 2.$$ (8.73) Define $w(\phi_1, \phi_2)$ (the "Wronskian") by $$w(\phi_1, \phi_2) = \phi_1'(x)\phi_2(x) - \phi_1(x)\phi_2'(x). \tag{8.74}$$ - (b) Prove that w is independent of x by deducing from (8.73) that its derivative vanishes. - (c) Prove (8.72) by evaluating $w(\psi_i, \psi_i^*)$ for $x \le -a/2$ and $x \ge a/2$, noting that because v(x) is real ψ_i^* will be a solution to the same Schrödinger equation as ψ_i . - (d) By evaluating $w(\psi_l, \psi_r^*)$ prove that rt^* is pure imaginary, so r must have the form $$r = \pm i |r| e^{i\delta}, \tag{8.75}$$ where δ is the same as in (8.71). (e) Show as a consequence of (8.70), (8.72), and (8.75) that the energy and wave vector of the Bloch electron are related by $$\frac{\cos(Ka+\delta)}{|t|}=\cos ka, \qquad \varepsilon=\frac{\hbar^2K^2}{2m}.$$ (8.76) Since |t| is always less than one, but approaches unity for large K (the barrier becomes increasingly less effective as the incident energy grows), the left side of (8.76) plotted against K has the structure depicted in Figure 8.6. For a given k, the allowed values of K (and hence the allowed energies $\mathcal{E}(k) = \hbar^2 K^2/2m$) are given by the intersection of the curve in Figure 8.6 with the horizontal line of height cos (ka). Note that values of K in the neighborhood of those satisfying $$Ka + \delta = n\pi \tag{8.77}$$ give $|\cos(Ka + \delta)|/|t| > 1$, and are therefore not allowed for any k. The corresponding regions of energy are the energy gaps. If δ is a bounded function of K (as is generally the case), then there will be infinitely many regions of forbidden energy, and also infinitely many regions of allowed energies for each value of k. (f) Suppose the barrier is very weak (so that $|t| \approx 1$, $|r| \approx 0$, $\delta \approx 0$). Show that the energy gaps are then very narrow, the width of the gap containing $K = n\pi/a$ being $$\varepsilon_{\rm gap} \approx 2\pi n \frac{\hbar^2}{ma^2} |r|. \tag{8.78}$$ (g) Suppose the barrier is very strong, so that $|t| \approx 0$, $|r| \approx 1$. Show that the allowed bands nation about the of its magnitude (8.71) nase of the transhe probability of (8.72) $1 \phi_2$ be any two (8.73) (8.74) ivative vanishes. that because v(x) ve the form ave vector of the (8.76) tier becomes inad against K has ence the allowed 6 with the horie satisfying (8.77) ponding regions the case), then nany regions of that the energy (8.78) allowed bands Figure 8.6 Characteristic form of the function $\cos (Ka + \delta)/|t|$. Because |t(K)| is always less than unity the function will exceed unity in magnitude in the neighborhood of solutions to $Ka + \delta(K) = n\pi$. Equation (8.76) can be satisfied for real k if and only if the function is less than unity in magnitude. Consequently there will be allowed (unshaded) and forbidden (shaded) regions of K (and therefore of $\mathcal{E} = \hbar^2 K^2/2m$). Note that when |t| is very near unity (weak potential) the forbidden regions will be narrow, but if |t| is very small (strong potential) the allowed regions will be narrow. of energies are then very narrow, with widths $$\varepsilon_{\text{max}} - \varepsilon_{\text{min}} = O(|t|). \tag{8.79}$$ (h) As a concrete example, one often considers the case in which $v(x) = g\delta(x)$, where $\delta(x)$ is the Dirac delta function (a special case of the "Kronig-Penney model"). Show that in this case $$\cot \delta = -\frac{\hbar^2 K}{mg}, \qquad |t| = \cos \delta. \tag{8.80}$$ This model is a common textbook example of a one-dimensional periodic potential. Note, however, that most of the structure we have established is, to a considerable degree, independent of the particular functional dependence of |t| and δ on K. #### 2. Density of Levels - (a) In the free electron case the density of levels at the Fermi energy can be written in the form (Eq. (2.64)) $g(\mathcal{E}_F) = mk_F/\hbar^2\pi^2$. Show that the general form (8.63) reduces to this when $\mathcal{E}_n(\mathbf{k}) = \hbar^2 k^2/2m$ and the (spherical) Fermi surface lies entirely within a primitive cell. - (b) Consider a band in which, for sufficiently small k, $\mathcal{E}_n(\mathbf{k}) = \mathcal{E}_0 + (h^2/2)(k_x^2/m_x + k_y^2/m_y + k_z^2/m_z)$ (as might be the case in a crystal of orthorhombic symmetry) where m_x , m_y , and m_z are positive constants. Show that if \mathcal{E} is close enough to \mathcal{E}_0 that this form is valid, then $g_n(\mathcal{E})$ is proportional to $(\mathcal{E} \mathcal{E}_0)^{1/2}$, so its derivative becomes infinite (van Hove singularity) as \mathcal{E} approaches the band minimum. (Hint: Use the form (8.57) for the density of levels.) Deduce from this that if the quadratic form for $\mathcal{E}_n(\mathbf{k})$ remains valid up to \mathcal{E}_F , then $g_n(\mathcal{E}_F)$ can be written in the obvious generalization of the free electron form (2.65): $$g_n(\mathcal{E}_F) = \frac{3}{2} \frac{n}{\mathcal{E}_F - \mathcal{E}_0}$$ (8.81) where n is the contribution of the electrons in the band to the total electronic density. # PZYOA FZOIG PS 5 SOLUTIONS (a) $\psi(x,y,z) = \frac{1}{\sqrt{L}} \sin \frac{n_z \pi z}{L} \frac{1}{\sqrt{a}} \sin \frac{n_x \pi x}{a} \frac{1}{\sqrt{a}} \sin \frac{n_y \pi y}{a}$ with a N 10 cm much less than L N 1 cm This obviously obeys - the Det = Ey (Me Sch Egn) with $E(n_X, n_Y, n_Z) = \frac{t^2\pi^2 \int n_X^2 + n_Y^2 + n_Z^2}{2m} \left\{ \frac{n_X^2 + n_Y^2 + n_Z^2}{a^2 + L^2} \right\}$ and boundary conditions such that it vanish when x,y, or z = 0 and when x,y = a or z=6. (ie at boundaries of the wire). (b) We fill up the levels nx, ny, n2 = 51,2,3... } from lowest to highest energy at T=0. Since LN108 q, it is clear we will go to very large values of ny (ny ~ VI = 104) before changing nx and ny away from nx = np=1. We can compute Ky in d=1 just as we Lidin d=d,3. The # of = Nis N=2 L JEF JK = 2 L KR for spin convert E to Sdk = Kp = TEQU and E = \$\frac{1}{2} (\pi \frac{1}{2})^2 We also have N = Lap and p= 8.49.1022 cm3 E = \$2 (= 2 p) = 52 (2 p)2 When this Ex exceeds the gap from 1x=1 to 1x=2 we will start populating 1x=2 $gap = \frac{h^2}{2m} + \frac{1}{2} \left\{ 2^2 - 1^2 \right\} = \frac{h^2}{2m} + \frac{3\pi}{a^2}$ 7 12 (ap) > 7 t2 312 abp2 > 12 (Notice this is dimensionally correct!) Edenish of starter at Ferni level derivative (1 4 x k² (1)3 of E-functu m But here in b=1 H(E) = $$\int \delta(E - \frac{t^2 k^2}{zm}) \cdot dk(\frac{L}{2E})$$ $$C = \frac{\pi^2 k_B T}{3} \frac{2\pi h^2}{2\pi h^2} \frac{L}{K_F}$$ But we know $$E_F = \frac{\hbar^2 \pi^2}{8m} (a^3 p)^2$$ a) In time to the electron will accelerate to a velocity V= -eEt R if the electric field == ER If the election stops after a collision, then the ket look $\frac{1}{2}m\left(eEE\right)^{2}=\frac{1}{2m}\left(eEE\right)^{2}$ (Really what happens in Drude piture is @ enages from collision with velocity Von where is a random vector. So a better calculation is V = Von - etth n = direction of fer first collision of time & V= Vo A' n' = direction AKE = Im ((Von - ettle)2 - (Von1)2) (ett)2-ett(Vo)z V2 Bit since < Voz) =0 we get some result) The probability of a collision occurring between t and ttdt is dt/ze-t/z So he average energy 1085 15 Ja st e-t/t i (eEt)2 X= t/t Po lx e X2 ZmeEt)2 = in (ett)2 Levery ton f single e Energy lass in a wive with N electrons in time I $P = \frac{\Delta E}{E} = \frac{1}{m} (eEE)^2 N = \frac{ne^2 C}{m} VE^2$ P/V = OEZ Writing V=LA R= T = JA= JEA yields P = I2R. U(+27,0) = 2 = U(0,+27) Ut is nonzero only for 4 values of &! This yields he bands $E = \frac{\left(\left(k_{x}, k_{y}\right) + \left(\left(k_{x}, k_{y}\right) + \left(\left(k_{x}, k_{y}\right) - \left(\left(k_{x}, k_{y}\right)\right)^{2} + \left(\frac{1}{2}\right)^{2}}{2}$ with E(kx ky) = = = = (kx + ky) b) The situation is move complex as one approaches the corners (kx, ky) = (# 1 since then they are four k values with almost identical energies * four degenerate levels! Kx we have a 4x4 mostrix E(K,ky)-E "40/2 40/2 Ug/2 E(kx-21/ky)-E 0 0 E(kx, ky-21)-P Uo/2 Ckx ky-24 40/2 40/2 40/2 E(K=1)-E CK2TK-27 | | The Energy levels E are obtained by setting the Leterminant | |----|--------------------------------------------------------------------------------| | | of this 4x4 matrix to zero. You might expect a quertic | | | | | | egn with no solution, but the simplicity of the structure | | | leads to something nice! Let's denote Uo/2=U and | | | $ \epsilon_1 = \epsilon(k_x k_y) $ $ \epsilon_2 = \epsilon(k_x - 2iy_a, k_y) $ | | | E3 = ∈ (kx, ky-21) | | | | | | E,-E u u o | | | U E-E O U | | | u 0 €3-E U | | | 0 U U 4-E | | () | (E,-E) (Ez-E) [(Ez-E)-u²] + 4[0-u(Ez-E)] | | | -u { u[(=,-E)(+,-E)-u2] - u[0-u2]} | | | + u { u (o-u2) - u[(+2-E)(+4-E)-42]}=0 | $$-u^{2} \left\{ \epsilon_{1} \epsilon_{2} + E^{2} - E(\epsilon_{1} + \epsilon_{2}) + \epsilon_{1} \epsilon_{3} + E^{2} - E(\epsilon_{1} + \epsilon_{3}) + \epsilon_{2} \epsilon_{4} + E^{2} - E(\epsilon_{3} + \epsilon_{4}) + \epsilon_{2} \epsilon_{4} + E^{2} - E(\epsilon_{2} + \epsilon_{4}) \right\} = 0$$ * I have not yet seen how to proceed from here * (hence $\vec{r}=0$) and to a copper in the cell one und over in $+\vec{x}$ direction. This leads to : 4-2 (Ed - t(1+e") - t(1+e") no hopping A must be Hermitian between oxygens Ed -t(1xe kx) -t(1xe kx) -t(1+e-ikx) = p Compute eigenvalues (EJ-E) (Ep-E)2-0] + + (1+eikx) [-+(1+e-ikx)(+p-E) - 0] - t(1+eiky) (+p-E) = (Ep-E) [(Ep-E)(Ey-E)-2t2(2+coskx+cosky)] 4-2 we see the "flat band", one soln is E= Ep independent of kx, ky The open how banks are disparry $E = \frac{1}{2} \left\{ \left(\epsilon_{\downarrow} + \epsilon_{p} \right) \pm \sqrt{\left(\epsilon_{\downarrow} + \epsilon_{p} \right) - 4 \left(\epsilon_{p} \epsilon_{\downarrow} - 2 t^{2} \left(2 + \epsilon s h_{\downarrow} + \epsilon s h_{\downarrow} \right) \right\}}$ E= = = {(\(\epsi_1 + \epsi_p) + \(\epsi_2 - \epsi_p)^2 + 8t^2(\(\cosh_x + \cosh_y)\)} check: If t=0 These give E=Ed and another copy of E = Ep, 5-2 (Ald in E if you like) optional: Go through all allowed & point 2, compute E(k) and bin. Note: Need to determine allowed k valves. This is a little tricky weed to think about BDY conditions ... From In this problem we are interested in obtaining the $$U(x) = \sum_{n=-\infty}^{\infty} V(x-na)$$ The claim is that a good starting point is the scattering problem off a single potentil v(x) $\frac{1}{2}(x) = \frac{1}{2}e^{iqx} + re^{-iqx}$ $\frac{1}{2}e^{iqx} + re^{-iqx}$ -92 ° ° × rynt $(-iq) = \int e^{-iq} \times \times$ x<-0/2 x>a/2 12g2 = E 4(x) = A4(x) + B4,(x) Soln-f. Sch. Egn is linear combo of te3tr 4(x+a) = eika +(x) ? Bloch Thm +(x+a) = e'ka +/x) 6-2. Computing to determinant yields -t + treiga + t² eiga ika + ie q e ika - je zika + reika - r²eiqa ika - rteiqa zika - (t + treiqa - t²eiga ika - e iqa ika - pe ka + te + reika + reiqa ika - rteiqa zina -t + treiqa ika -iqa ika - teika - reiqa ika = 0 Multiplying by e-ika -te-ika + (t2-r2) eiqa + =iqa -te ika = 0 (t2-r2) eiga + eiga = t(eika + eika) = 2 toska $coska = \frac{t^2 - r^2}{2t} = \frac{iqa}{2t} + \frac{1}{2t} = \frac{iqa}{2t}$ Hence When v=0 we expect t=1 and r=0 coska = 1 (eiga + e-iga) = cosqa so k=q and E= t2 k2/2m is usual free particle b) $$\frac{dW}{dx} = \frac{1}{4x} (\frac{1}{4} + \frac{1}{2} - \frac{1}{4} + \frac{1}{2}) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$$ $$x < \frac{q}{2} \quad \uparrow_{R} = e^{iqx} + re^{-iqx}$$ $$y' = iq \left(e^{iqx} + re^{-iqx}\right)$$ $$y'_{R} = iq \left(-e^{-iqx} + r^{*}e^{iqx}\right)$$ $$y'_{R} = iq \left(-e^{-iqx} + r^{*}e^{iqx}\right)$$ $$-(-1+L_{4}e_{5idx}-L_{5idx}+L_{4})$$: $M = id \left\{ (1+L_{4}e_{5idx}-L_{5idx}-L_{4}) \right\}$ Setting these equal 1-|r|2= |t|2 => |r|2+|t|2=1 A (d) 4= eigx + re-igx Yol = iq (eigx-re-igx) x = + iq x \(\psi' = iq + eq \times \) W= ig { (t* e2igx - rt*) - (t2 e1gx + rt*)} = -]iq r t* x> 9/2 Ye= teigx Yo=iqteigx 4x = e + + x + x + x + x + x = iq (+ e + iqx - r x = iqx) W = iq { (t = 2iqx + rxt) - (+te ziqx + rxt)} = 2igrat = rtx = rx+ = (rtx)x Thus If -Z=Z* then Z=X+iy -x-iy = x-iy So Z is pore inalinary e) we have (1) $$\cos ka = \frac{t^2 - r^2}{2t} e^{ita} + \frac{1}{2} e^{-itq} a$$ (2) $1 = |t|^2 t |r|^2$ (3) $r = \pm |r| e^{it}$ This dellows from $t = |t| e^{it}$ and rt^* Imaginary $rt^* = \pm i|r|tt$ $r = \pm i|r|e^{it\delta}$ 68. (4) Weak barren 1t/2/ /r/20 524 Assume we can pet 8=0 and that ga = MTC+A Then cos ga = cos(nT(+D) = (-1)^n [1- 1-1] The gaps and when $co(qa+\delta) = |+| = (|-|r|^2)^{1/2} \approx |-\frac{1}{2}|r|^2$ ga € (nT-|n, nT+|n) excluded $E = \frac{1}{2} \frac{q^2}{2m} - \frac{h^2}{2m} \frac{(n^2\pi^2 - 2n\pi |r|)}{2m}, \frac{h^2}{2m} \frac{(n^2\pi^2 + 2n\pi |r|)}{2m}$ $\frac{t^2}{2ma^2} \frac{4n\pi |r|}{2ma^2} = \frac{2\pi n}{ma^2} \frac{t^2}{ma^2}$ (9) Again the boundaries are determined by cosqu = 1+) except here It is small, so que must be near 10 315 where costre us small ga & (\$\frac{1}{2}(2n+1) - \Delta\), \$\frac{1}{2}(2n+1) + \Delta\) cooga ~ (-A, A) So we conclude $$0 = |t|$$ is $qa = qa = must be with $|t|$ if $\frac{\pi}{2}(2n+1)$. $qa \in (\frac{\pi}{2}(2n+1)-|t|), \frac{\pi}{2}(2n+1)+|t|)$ The gap is $\frac{\pi}{2}qap = 2\frac{\pi}{2}(2n+1)|t| = \frac{1}{2} \frac{$$ $$-\frac{1}{2m}\left(\frac{d\psi}{dx}\right) + \frac{d\psi}{dx} + \frac{d\psi}{dx} = 0$$ $$-\frac{t^2}{2m}\left(igt-ig(1-r)\right) + \lambda t = \beta$$ $$-\frac{t^{2}}{2m}iq(t-1+t-1)+\lambda + = 0$$ 6-10. $$\pm (\lambda - \frac{t^2 i g}{m}) = -\frac{t^2 i g}{m}$$ $$\frac{1 - m\lambda}{t^2 iq} + \frac{m\lambda i}{t^2 q}$$ Defining $$\eta = m\lambda/t^2q$$ $t = \frac{1-\eta i}{1+\eta i} = \frac{1-\eta i}{1+\eta^2}$ Thus $$|\pm|^2 = \frac{1}{(1+\eta^2)^2 + \frac{\eta^2}{(1+\eta^2)^2}} = \frac{1}{1+\eta^2}$$ and $$\frac{1}{\sqrt{1+\eta^2}}$$ $\frac{1}{-\sqrt{1+\eta^2}}$ $\frac{1}{\sqrt{1+\eta^2}}$ $\frac{1+\eta^2}$ $\frac{1}{\sqrt{1+\eta^2}}$ $\frac{1}{\sqrt{1+\eta^2}}$ $\frac{1}{\sqrt{1+\eta^2}}$ $\frac{1}{$