PROBLEM SET 5 Due Friday December 13
Physics 240A— FALL 2019

[1.] Consider a long thin wire of copper along the z-direction with length L = 1 ¢cm and a
square cross section (width a is a few A). Treat the wire as a free electron gas, demanding
that the wave function vanishes outside of the wire. Use periodic boundary conditions along
the length of the wire. The electron density for copper is 8.49 x 10?2 electrons/cm?3.

a) Solve the Schrodinger equation for this geometry.

b) Which states are occupied at zero temperature? Qualitatively describe the dependence
on the width a.

c¢) Calculate the maximum possible width a of the wire such that only the ground state in z
and y directions is occupied.

d) Calculate the low-temperature specific heat for the case when only the ground state in z
and y directions is occupied (algebraic answer in terms of a and the electron density OK).

[2.] Consider a metal at uniform temperature in a static uniform electric field E. An elec-
tron experiences a collision, and then, after a time ¢, a second collision. In the Drude model,
energy is not conserved in a collision, for the mean speed of an electron emerging from a
collision does not depend on the energy that the electron acquired from the field since the
time of the preceding collision.

a) Show that the average energy lost to the ions in the second of two collisions separated
by a time ¢ is (eEt)?/2m. (The average is over all directions in which the electron emerged
from the first collision.)

b) Show that the average energy loss to the ions per electron per collision is (eFt)?/m, and
hence that the average energy loss per volume and time is 0 E2. Deduce that the power loss
in a wire of length L and cross section A is I?R, where I is the current flowing and R is the
resistance of the wire. .

Hint: You will need to argue that the probability that the time interval between two succes-
sive collisions is in the range [t,t + dt] is (dt/T) e/.

[3.] Consider 2D electrons subject to a weak periodic potential

2 2
Ulz,y) = U (cos%x + COS%)

a) Find the energy bands near the edges of the first Brillouin zone. (Hint: the edges of the
Brillouin zone are the Bragg planes where the eigenstates are doubly degenerate.) Plot the
bands and isoenergetic surfaces.

b) Repeat the analysis of part a) for regions near the corners of the first Brillouin zone,
where there are four degenerate eigenstates.



[4.] As we discussed in Problem Set #1, in the
lattice of the CuQO; planes of the cuprate super-
conductors, the copper atoms (blue) form a square
array, and oxygen atoms (green) live between each
near-neighbor pair of copper atoms. See Figure at
right. Solve for the tight-binding energy levels of
this lattice, assuming that electrons can only hop
on the (red) bonds which link neighboring cop-
per and oxygen atoms. The amazing feature of
this problem is the presence of “flat bands”: the
electron energy is completely independent of the
momentum for one of the three bands.

&2 >
= =
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copper
oxygen

[5.] Compute the tight-binding bands for the hexagonal (honeycomb) lattice. You need to
combine the unpleasantness of non-orthogonal axes of the triangular lattice done in class

with having two atoms per unit cell.

Optional: Just as you did in Problem Set #4, compute (numerically) the density of states
N(E). You will find that, although there is no gap, N(E) vanishes linearly at the ‘Dirac

point’ at E = 0. This is the remarkable feature of graphene.

[6.] Problem 8-1 from Kittel (which I reproduce on the next four pages).
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PROBLEMS

1. Periodic Potentials in One Dimension
The general analysis of electroniclevels in a periodic potential, independent of the detailed features
of that potential, can be carried considerably further in one dimension. Although the one-dimen-
sional case is in many respects atypical (there is no need for a concept of a Fermi surface) or
misleading (the possibility—indeed, in two and three dimensions the likelihood—of band overlap
disappears), it is nevertheless reassuring to see some of the features of three-dimensional band
structure we shall describe through approximate calculations, in Chapters 9, 10, and 11, emerging
from an exact treatment in one dimension, .
Consider, then, a one-dimensional periodic potential U(x) (Figure 8.4). It is convenient to view
the ions as residing at the minima of U, which we take to define the zero of energy. We choose
to view the periodic potential as a superposition of potential barriers v(x) of width q, centered at
the points x = +na (Figure 8.5):

Ux) = i v(x — na). (8.64)

n=—o

Figure 8.4

A one-dimensional periodic
potential U(x). Note that the
ions occupy the positions of
a Bravais lattice of lattice
constant a. It is convenient
to take these points as having
coordinates (1 + 3)a, and to
choose the zero of potential
to occur at the position of
the ion.

Figure 8.5

Tlustrating particles incident
from the left (a) and right (b)
on a single one of the bar-
riers separating neighboring
ions in the periodic potential
of Figure 8.4. The incident,
transmitted, and reflected
waves are indicated by ar-
rows along the direction of
propagation, proportional to
the corresponding ampli-
4 tudes.

The term 1(x — na) represents the potential barrier against an electron tunneling between the
ions on opposite sides of the point na. For simplicity we assume that v(x) = v(—x) (the one-
dimensional analogue of the inversion symmetry we assumed above), but we make no other
assumptions about v, so the form of the periodic potential U is quite general.
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The band structure of the one-dimensional solid can be expressed quite simply in terms of the
properties of an electron in the presence of a single-barrier potential v(x). Consider therefore an
electron incident from the left on the potential barrier v(x) with energy®? & = h2K2/2m. Since
v(x) = 0 when |x| > af2, in these regions the wave function ,(x) will have the form

Vi) = & 4 pemiKx x < — g,
) a
= te'k>, x> 7 (8.65)
This is illustrated schematically in Figure 8.5a, .

The transmission and reflection coefficients ¢ and r give the probability amplitude that the
electron will tunnel through or be reflected from the barrier; they depend on the incident wave
vector K in a manner determined by the detailed features of the barrier potential v. However,
one can deduce many properties of the band structure of the periodic potential U by appealing
only to very general properties of ¢ and r. Because v is even, ¥,(x) = ¥(—x) is also a solution
to the Schrddinger equation with energy 8. From (8.65) it follows that i,(x) has the form

. a
’//,-(X) = le in, X S - '2—3

=e % 4 pd®x x> ;. (8.66)

Evidently this describes a particle incident on the barrier from the right, as depicted in Figure 8.5b.

Since ¥, and , are two independent solutions to the single-barrier Schrédinger equation with

the same energy, any other solution with that energy will be a linear combination* of these two:

¥ = Ay, + ByY,. In particulaz, since the crystal Hamiltonian is identical to that for a single

ion in the region —a/2 < x < a/2, any solution to the crystal Schrédinger equation with energy
& must be a linear combination of , and ¥, in that region:

V) = AN + BYd, - <x <3, @7
Now Bloch’s theorem asserts that i can be chosen to satisfy
V(x + a) = e*y(x), (8.68)
for suitable k. Differentiating (8.68) we also find that ¥’ = dij/dx satisfies
V(x + a) = e*ny(x). (8.69)

(a) By imposing the conditions (8.68) and (8.69) at x = —a/2; and using (8.65) to (8.67),
show that the energy of the Bloch electron is related to its wave vector k by:
2 2 252

— ¥ | h*K

iKa il = :
TR + TR & T (8.70)

t
cos ka =

Verify that this gives the right answer in the free electron case (v = 0).

33 Note: in this problem X is a continuous variable and has nothing to do with the reciprocal lattice.
34 A special case of the general theorem that there are # independent solutions to an nth-order linear
differential equation.
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Equation (8.70) is more informative when one supplies a little more information about the
transmission and reflection coefficients. We write the complex number ¢ in terms of its magnitude
and phase: )

t = |tf &2 8.71)
The real number § is known as the phase shift, since it specifies the change in phase of the trans-
mitted wave relative to the incident one. Electron conservation requires that the probability of
transmission plus the probability of reflection be unity:

=g+ 2. - 8.72)

This, and some other useful information, can be proved as follows. Let ¢, and ¢, be any two
solutions to the one-barrier Schrédinger equation with the same energy:

m o, n2K? .
~om ¢ + v = W(ph i=1,2 8.73)

Define w(¢,, ¢,) (the “Wronskian”) by ]
w1, 62) = b1/ ()P200) — P1(X)2(0). 874

(b) Prove that w is independent of x by deducing from (8.73) that its derivative vanishes.

(c) Prove (8.72) by evaluating w(i}y, ,*) for x < —af2 and x = af2, noting that because v(x)
is real J,* will be a solution to the same Schrédinger equation as ;.

(d) By evaluating w(y, {*) prove that rt* is pure imaginary, so r must have the form

r= tilr] € @8.75)

where 9 is the same as in (8.71).
(¢) Show as a consequence of (8.70), (8.72), and (8.75) that the energy and wave vector of the
Bloch electren are related by

22
CO_S({:EI_—!‘Q = cos ka, 8 = s ; (8.76)
i 2 |

Since |¢] is always less than one, but approaches unity for large K (the barrier becomes in-
creasingly less effective as the incident energy grows), the left side of (8.76) plotted against K has
the structure depicted in Figure 8.6. For a given k, the allowed values of K (and hence the allowed
energies (k) = h*K2/2m) are given by the intersection of the curve in Figure 8.6 with the hori-
zontal line of height cos (ka). Note that values of K in the neighborhood of those satisfying

Ka+d=mnn ) 8.77

give |cos (Ka + d)|/|t| > 1, and are therefore not allowed for any k. The corresponding regions
of energy are the energy gaps. If § is a bounded function of K (as is generally the case), then
there will be infinitely many regions of forbidden energy, and also infinitely many regions of
allowed energies for each value of k.

(f) Suppose the barrier is very weak (so that [¢| ~ 1, || ~ 0, § ~ 0). Show that the energy
gaps are then very narrow, the width of the gap containing K = nn/a being

hz
Ep ¥ 271 . (8.78)

(8) Suppose the barrier is very strong, so that |t| = 0, |r| &~ 1. Show that the allowed bands
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Figure 8.6

Characteristic form of the
function cos (Ka + d)/|t|. Be-
cause |H(K)| is always less
than unity the function will
exceed unity in magnitude
in the neighborhood of solu-
tions to Ka + 6(K) = nn.
Equation (8.76) can be satis-
fied for real k il and only
if the function is less than
unity in magnitude. Conse-
quently there will be allowed
(unshaded) and forbidden
(shaded) regions of K (and
therefore of & = #2K?%/2m).
Note that when |ff is very
near unity (weak potential)
the forbidden regions will be
narrow, but if |¢| is very small
(strong potential) the allowed
regions will be narrow.

of energies are then very narrow, with widths

Smax — Emin = O(Jt]). (8.79)

(h) As a concrete example, one often considers the case in which v(x) = gd(x), where d(x)
is the Dirac delta function (a special case of the “Kronig-Penney model”). Show that in this case

2K
cotd = — h—, |t| = cos é. - (8.80)
myg

This model is a common textbook example of a one-dimensional periodic potential. Note, how-
ever, that most of the structure we have established is, to a considerable degree, independent of
the particular functional dependence of |¢] and & on K.

2. Density of Levels

(a) In the free electron case the density of levels at the Fermi energy can be written in the
form (Eq. (2.64)) g(6¢) = mkgfh*xn*. Show that the general form (8.63) reduces to this when
8.(K) = A%k?/2m and the (spherical) Fermi surface lies entirely within a primitive cell.

(b) Consider a band in which, for sufficiently small k, 8,(k) = & + (h*/2)(k.2/m, + k,2/m, +
k,%/m,) (as might be the case in a crystal of orthorhombic symmetry) where m;, m,, and m, are
positive constants. Show that if & is close enough to &, that this form is valid, then g,(€) is pro-
portional to (& — &)'/?, so its derivative becomes infinite (van Hove singularity) as & approaches
the band minimum. (Hint: Use the form (8.57) for the density of levels.) Deduce [rom this that if
the quadratic form for §,(k) remains valid up to &, then g,(8¢) can be written in the obvious
generalization of the free electron form (2.65):

3 n

9u(8F) = 3% — & (8.81)

where n is the contribution of the electrons in the band to the total electronic density.
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