[1.] For a system of non–interacting one–dimensional classical particles in a harmonic oscillator potential:
 a. Calculate the grand potential.
 b. Obtain $\langle N \rangle$ and $\langle E \rangle$ and show they obey the equipartition theorem.

[2.] Massless particles have energy–momentum relationship $E = cp$. For a system of spinless one–dimensional Fermi–Dirac massless particles, determine the relationships between $\langle N \rangle$, $\langle E \rangle$, μ, and T.

[3.] Consider a gas of He3 atoms at pressure P and temperature T in equilibrium with an adsorbed surface layer of He3 atoms. The surface He3 atoms have their translational degrees of freedom, as well as spin, and are bound with an energy ϵ_0. Find the dependence of the surface density of He3 as a function of P and T in
 a. the classical limit.
 b. in a limit where the gas is classical and the adsorbed layer is not.

[4.] Write down the path integral expression for the quantum partition function for the $d = 1$ Ising model in a transverse field

$$\hat{H} = -J \sum_{i=1}^{N} \hat{\sigma}_i^z \hat{\sigma}_{i+1}^z - \Gamma \sum_{i=1}^{N} \hat{\sigma}_i^x$$

and show it is identical to that of the $d = 2$ classical Ising model (with anisotropic coupling $J_x \neq J_y$).