PROBLEM SET 4
Physics 219A, Spring 2014
Due Wednesday, May 14

[1.] Work out the mean field theory for the Blume-Capel model

\[H = -J \sum_{ij} S_i S_j + \Delta \sum_i S_i^2 \]

where \(S_i = 0, \pm 1 \). Show that for a range of values of \(\Delta \) the model has a first order phase transition, that is, the magnetization \(M \) is a discontinuous function of the temperature \(T \). Sketch the phase diagram. Hints:

i. Write \(S_i = M + (S_i - M) \) and substitute into \(H \) neglecting terms of order \((S - M)^2\).

ii. Calculate \(Z \) and \(F \) as a function of \(M \).

iii. Sketch graphs of \(F \) versus \(M \) for various \(\Delta \) and \(T \). A crucial feature compared to the models we discussed in class will be the possibility that the \(M^4 \) term in \(F \) could be negative.

[2.] Solve the XY model in mean field theory. What is \(T_c \) for a 2-d square lattice, and how does it compare to the mean field solution for the Ising model? Can you argue why \(T_c \) is expected to be lower/higher?