PROBLEM SET 6
Physics 219A, Spring 2014
Due Wednesday, June 11

[1.] For a system of non-interacting one-dimensional classical particles in a harmonic oscil-
lator potential:

a. Calculate the grand potential.

b. Obtain (N) and (E) and show they obey the equipartition theorem.

[2.] Massless particles have energy-momentum relationship £ = ¢p. For a system of spinless
one-dimensional Fermi-Dirac massless particles, determine the relationships between (N},
(E), pyand T

[3.] Consider a gas of He® atoms at pressure P and temperature T' in equilibrium with an
adsorbed surface layer of He® atoms. The surface He? atoms have their translational degrees
of freedom, as well as spin, and are bound with an energy ¢;. Find the dependence of the
surface density of He® as a function of P and T in

a. the classical limit.

b. in a limit where the gas is classical and the adsorbed layer is not.

[4.] Write down the path integral expression for the quantum partition function for the d = 1
Ising model in a transverse field
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and show it is identical to that of the d = 2 classical Ising model (with anisotropic coupling

Jo £ J,).
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Figure 5, The potential energy of a single Quantum Oscillator as a function of tem-
perature, Here m = 1 and w = 2. The full line is the exact result for A7 = 0 while the
closed and open circles are for fixed L = 8 and L = 16 respectively.

The quantum mechanical operators X, generate a set of classical variables
Zp, With an additional imaginary time index. Thus the partition function
of the one dimensional quantum problem maps onto a classical problem in
1 4+ 1 dimensions. Anisotropic couplings distinguish correlations in space
and imaginary time.

3. The One—Dimensional Ising Model in a Transverse Field

In the previous section we described the world-line approach for a single
quantum oscillator and collections of quantum oscillators. These models
provide the most simple illustration of the technique, and are also solvable
analytically, in the absence of anharmonicity. The bulk of the applications
of the world-line approach, however, has been to quantum spins and inter-
acting bosons and fermions. In this section we will describe the Ising model
in a ftransverse magnetic field. Here, the effective classical model is espe-
cially simple, and, in fact, the world-line mapping allows us to determine
much of the physics even before performing simulations. This model, with
the addition of randomness to the couplings, has revealed some remark-
able features of disordered quantum systems, partially through numerical
work.[10, 11]
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The Ising model provides a simple description of magnetic phase transi-
tions. Classical “spin” degrees of freedom S which can take on the values
Sf = =£1 exist on the sites i of a lattice. Spins on different lattice sites
interact via a coupling constant J,

Ho=JY Sist. (21)
)

The symbol (ij) indicates a sum over near—neighbor sites, the case most
often considered. For a ferromagnetic coupling J < 0, spins S¥ and sz
with the same value have lower energy and hence order is favored. On
the other hand, the entropy favors random spin configurations. This model
has a finite temperature phase transition in two and higher dimensions in
which the global up—down symmetry of the spins is broken and a non—zero
spontaneous magnetization m = (S¥) exists below the critical temperature
T.. For a two-dimensional square lattice in which the couplings J; and J,
between neighbors in the £ and y directions are identical, T, ~ 2.269.J.
More generally, if J; and J,, differ, T, is given by

oWy 2y
2tanh[—éﬁ]tanh[k—,ﬂz] = 1. (22)

The Ising model Eq. 22 has been very extensively studied by classical
monte carlo methods.[12] However, if a transverse magnetic field, H; =
—B}7; SF, is added, quantum simulation methods must be employed owing
to the non-commutivity of the operators. We proceed as for the quantum
harmonic oscillator, beginning with the partition function, discretizing the
inverse temperature §, and separating the two non—commuting pieces of
the Hamiltonian.

7 — Tre——,ﬁﬁ — Tr[e—A’rI:I]L ~ Ty = !I\r[e—ATﬁge—ATﬂl]L. (23)

Complete sets of states |S7 5% ...5%) which are eigenstates of the z com-
ponent of spin on each of the IV sites of the spatial lattice are then inserted.

~ArHo ~ATH
Z"*‘Z (ST1551 ... SR le™ 2770281085, . Sire)
S
(S72S35 ... Sipale™ A Hoe AT 8% G5e . Skia) - .

—ArHy ~ATH
(STLS5r, ... Shple™ "7 e 27557185, ... 1) (24)

The eigenvalues S have a second label { to specify the imaginary time slice.
Like the potential energy operator in our quantum oscillator example, the
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operator exp(—A7Hp) is diagonal in the basis chosen for the intermediate
states, and immediately comes out of the expectation values.

Zx o D explJAT Y SiSH(SHSE - Shale 2,85 - Sa)
5% )l

{( S55% ... Shle™7H1|8%,5%; ... Sks) ...

( S5.S3... Skple 7418782 ... S%) (25)

The remaining expectation values of the operators of z component of
spin are easily evaluated, since H; is the sum of pieces which commute.
Each matrix element factorizes,

~ArH
(STS% ... Siule™ =87 13158 141 - - Shrpa)

= [ 14Tl 5 15, 10)- (26)
i

These single site matrix elements are,
x — zZ QZ
(SEleATPH |S] 1) = e NS, (27)

where A = —In[tanhA7B]. Thus the effect of the transverse magnetic field
is to infroduce an Ising-like coupling in the imaginary time direction. This
is in close analogy to the kinetic energy operator in the quantum oscillator
case, which coupled positions at different imaginary times.

With the matrix elements evaluated, we have,

Zy = Y e F (28)
S5
E = —JATY Si85-AY SiSh.1, (29)

(i), il

which is identical to that of a (d + 1)-dimensional classical Ising model
with one direction having a different coupling constant, A, from the other
d dimensions, JAT.

We can now infer the phase diagram of the quantum model in d dimen-
sions from what is known concerning the classical model in d+1 dimensions.
Consider, for example, the case of a one—dimensional Ising model in a trans-
verse field. The mapping to the two—dimensional anisotropic classical model
tells us there is a phase transition in the J-B plane whose boundary is given
by Eq. 22, namely, 2tanh[2JAr]tanh[2)] = 1. This curve separates a small
B ferromagnetic phase, in which there is a symmetry-breaking spontaneous
magnetization in the z direction, from a paramagnetic phase at larger B.
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It is important to distinguish the role of 3 in the original quantum model
and its classical analog. The classical model exhibits a phase transition in
the thermodynamic limit, that is, when the size of the lattice is infinite, and
when 8J, and (3J, satisfy Eq. 22. In the language of the one-dimensional
Ising model in a transverse field, the condition that the classical lattice be
infinite corresponds to taking 8 — oo, since B gives one of the classical
linear dimensions. N — oo is also required of the original linear lattice size.
In other words, there is a “quantum phase transition” in the ground state
of the one-dimensional Ising model in a transverse field as a function of the
parameters J and B. '

Besides predicting a phase transition and giving an analytic expression
for the phase boundary, the mapping also tells us the dynamic critical
exponent z, which defines the relationship between the correlation length
in the spatial and imaginary time directions near the critical point. (See
also section 7.) Since the mapping is to a classical model which, to within an
anisotropy in coupling constants, looks the same in these directions, we infer
that z = 1 for the Ising model in a transverse field (in any dimension). In the
Hamiltonians to be.discussed in the following sections, the structure of the
action will be rather different in the space and imaginary time directions,
so that one might expect z # 1. We will briefly discuss the implications of
the value of 2 for finite size scaling in Section 7.

We conclude this section by noting that the problem of a one-dimensional
Ising model in a random transverse magnetic field has recently revealed
a number of fascinating features.[10, 11] None of the steps in the above
discussion of the world—line formulation required that the field B is site
independent, or that the coupling constant J not depend on the link ij.
World-line simulations of the disordered model[13] are then a simple gen-
eralization of the clean case, again illustrating the powerful feature of these
simulations that new Hamiltonians and their associated physics can often
be explored with simple modifications of codes.

4. The Spin-1/2 XXZ Hamiltonian

In the preceding section we saw how a d-dimensional Ising model in a trans-
verse magnetic field maps onto an anisotropic d -+ 1-dimensional classical
Ising model. The quantum mechanical Hamiltonian had a simple classical
analog because the non-diagonal terms in the Hamiltonian appeared only as
single site operators. We now turn to Hamiltonians where the non—diagonal
terms appear in pairs. As we shall see, this results in more complicated ef-
fective actions and restrictions on the allowed spin patterns.



