GRAND CANONICAL ENSEMBLE

Calculations in Microcanonical ensemble were much harder than canonical ensemble because particles shared a constant energy. Thus what particle I does affects all the others. There is an "interaction"

because of the constraint $E_1 + E_2 + E_3 + ... = E = \text{fixed}$

Thus we had no simple noninteracting limit where

$$Z_N = Z^{N \rightarrow \infty} \text{N}^{\text{th}} \text{ power}$$

$$\frac{Z}{N \text{ particles}} \text{ single particle}$$

We face a similar dilemma with quantum particles because of indistinguishability / Pauli principle.

Working in "grand canonical ensemble" will make things easy again.
Let's understand what the problem is with a simple example. Consider one classical particle in 3 energy levels E_1, E_2, E_3.

Clearly, $Z = e^{-\beta E_1} + e^{-\beta E_2} + e^{-\beta E_3}$

For two classical, distinguishable particles A, B, we have 9 possible configurations:

<table>
<thead>
<tr>
<th></th>
<th>AB</th>
<th>BA</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$Z = e^{-2\beta E_1} + e^{-2\beta E_2} + e^{-2\beta E_3} + 2e^{-\beta(E_1+E_2)} + \cdots$

$= (e^{-\beta E_1} + e^{-\beta E_2} + e^{-\beta E_3})^2$

So we explicitly see we did not ever need to consider a two-particle system but just each single particle individually and multiply $Z_1 \cdot Z_1 = Z_1^2$.
But quantum mechanics (Pauli + indistinguishability)

merges us up!

\[z_1 = e^{-\beta E_1} + e^{-\beta E_2} + e^{-\beta E_3} \]

still but

Bosons

\[E_3 \]

\[E_2 \]

\[E_1 \]

\[z = e^{-2\beta E_1} + e^{-\beta E_2} + e^{-\beta E_3} + 1 - e^{-\beta(E_1+E_2)} \]

\[\Delta \]

No factor of 2

\[\neq \ z^2 \neq 1 \]

Similar failure for fermions:

Fermions

\[E_3 \]

\[E_2 \]

\[E_1 \]

\[z = e^{-\beta(E_1+E_2)} + e^{-\beta E_1 - \beta E_2 - \beta E_3} \]

\[+ e^{-\beta(E_2+E_3)} \]
This problem is solved by removing restriction of fixed particle number. In a way it is similar to:

Microcanonical \(\rightarrow \) **Canonical**

- Fixed, shared \(E \) \(\rightarrow \) Unshared \(E \)
- Temperature instead

Canonical \(\rightarrow \) **Graduated canonical**

- Fixed, shared \(N \) \(\rightarrow \) Unshared \(N \)
- Chemical potential instead

Less familiar!

"Graduated potential" \(\rightarrow \) chemical potential

\[
Q = \sum_{N=0}^{\infty} \frac{1}{N!} e^{\beta N} z_N^2
\]

\(z_N \) is the partition function for \(N \) particles

For non-interacting particles \(z_N = z_1^N \) so

\[
Q = \sum_{N=0}^{\infty} \frac{1}{N!} e^{\beta N} z_1^N = e^{\beta z_1^2}
\]

Looks awkward \(\mathcal{Z} = e^{\beta z_1} \) "fugacity"
To understand what μ is let's compute $\langle N \rangle$

$$\langle N \rangle = Q^{-1} \sum_{N=0}^{\infty} \frac{1}{N!} e^{\beta N} \beta N N$$

This is the analog of $\langle E \rangle = \sum E_i p_i$$ = 2^{-1} \sum E_i e^{-\beta E_i}$

Consider $\frac{2}{3} \mu$ and $\alpha = Q^{-1} \sum_{N=0}^{\infty} \frac{1}{N!} e^{\beta N} \beta N N \alpha = \beta \langle N \rangle$

Thus $\langle N \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \alpha < \infty$ one practical understanding of μ

Analogy of $\langle E \rangle = -\frac{2}{3} \ln \beta$

But perhaps more physically we can see that

large μ gives large $e^{\beta N}$ and hence favors

having more particles, so μ is what allows you to
dial the density, in very much the same way that

temperature favors occupying higher energy levels and allows

you to dial $\langle E \rangle$.
Canonical Ensemble

\[F = -\frac{1}{\beta} \ln Z \quad \text{Free energy} \]

Grand canonical Ensemble

\[\mathcal{Z} = -\frac{1}{\beta} \ln \Omega \]

\[N = -\frac{\partial \mathcal{Z}}{\partial \mu} \]

\[P = -\frac{\partial \mathcal{Z}}{\partial V} \]

like \(P = -\frac{\partial F}{\partial V} \)

Recall

\[Z = \left(\int d^3r \int d^3p \ e^{-\beta \frac{p^2}{2m}} \right)^N \]

\[= \sqrt{N} \left(\frac{2\pi m k_B T}{e^{\beta \mu}} \right)^{3N/2} \]

\[F = -\frac{1}{\beta} \ln Z = -N \left(\frac{1}{\beta} \ln V - \frac{3N}{2} \ln (2\pi m k_B T) \right) \]

\[\beta = -\frac{\partial F}{\partial V} = \frac{N \frac{1}{\beta}}{V} \]

\[\Rightarrow PV = Nk_B T \]
Really desire z to be dimensionless

\[\sum \text{ configurations} e^{-\beta E} \]

\[\int d^3r \int d^3p \leq \text{unit of angular momentum} \times p \]

So divide by \hbar^3

\[z = \frac{V^N}{\lambda_r^{3N}} \]

\[\lambda_r = \frac{\hbar}{\sqrt{2\pi mk_B T}} \]

"de Broglie length"
Ideal gas vs. GCE

\[S = e^\beta \mu \]

\[Q = \sum_{N=0}^{\infty} e^{\beta \mu N} \frac{Z_N}{N!} = e^{3V/(\Delta T)^3} \]

\[\Delta = -\frac{1}{\beta} \ln Q = -k_B T \frac{3V}{(\Delta T)^3} \]

\[P = -\frac{\partial S}{\partial V} = +k_B T \frac{3V}{(\Delta T)^3} \]

\[N = -\frac{\partial S}{\partial \mu} = +k_B T \frac{3\beta V}{(\Delta T)^3} = \beta V P \]

\[PV = Nk_BT \quad \text{Recover ideal gas law!} \]