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If p < ¢, as assumed, there is no solution and the integral vanishes. The same result

obviously must follow if p > 4.
For the remaining case, p = g, we may still have the single term corresponding

to i = g — m-. Putting Eq. 12.97 into Eq. 12.96, we have
_{ytm | ] dZm qu “
(=g + m) J‘ X"( Xm)( Xq) dx. (12.101)
-1

[ L PO dx =

244 1412m) (g — m)! dx?"‘ dx* "
Since
Xm=(x*— )" =x™ —mx?" "2 4 o, (12.102)
dlm
| cbc_ZE'XM-——(zm)!’ (12.103)
Eq. 12.101 reduces to
1 (— 12" Q2g) g + m)! ot .
m 2 — q
J_i{Pq(x)] X = e — ) [ xrax (12.104)
The integral on the right is just
~ (=12** qlq!
— 17 2ty g = e 12.105
(-1 fosm ] Qa1 0! ( )

(cf. Exercise 10.4.9). Combining Eqs. 12.104 and 12.105, we have the orthogonality
integral

7! 2 (g + m)! _
P7(x) PV Ix= — — 12.106
.{_1 p(x) Pylx) dx 24+ 1 {g—m ™ ( )
or. in spherical polar coordinates,
2 + ! f;
daxmis (12.107)

fo Py(cos 0) P/(cos 0) sin 0di = P m! .
The orthogonality of the Legendre polynomials is actually a special case of this
result, obtained by setting m equal to zero; that is, for m = 0, Eq. 12.106 reduces
to Egs. 12.43 and 12.48.
It is possible to develop an orthogonality relation for associated Legendre
functions of the same lower index but different upper index. We find

_ (n + ) _

= 12.108
m(n — m)! (12.108)

mk

1 _
f PPx)PEC(E — x2)7 1 dx
-1

Note that a new weighting factor, (1 — x2)7!, has been introduced. This form
is essentially a mathematical curiosity. In physical problems orthogonality
of the ¢ dependence ties the two upper indices ‘together and leads to
Eq. 12.107.

ExaMPLE 12.5.1. MAGNETIC INDUCTION FIELD OF A CURRENT Loop.

Like the other differential equations of mathematical physics, the associated
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rée

FIG. 1212 Circular current loop
Legendre equation is likely to pop up quite unexpectediy. As an illustration,
consider the magnetic induction field B and magnetic vector potential A created
by a single circular current loop in the equatorial plane (Fig. 12.12).
We know from electromagnetic theory that the contribution of current element
f o). to the magnetic vector potential is

I d
dA—ﬂ——.

= 12.109
da r ( )

This, plus the symmetry of our system. shows that A has only a @y-component
and that the component is independent of ¢!

A =@y Ar, 0). (12.110)
By Maxwell’s equations
VxH=lJ, (0D}t = 0, mks units). (12.111)
Since .
HH=B=V x A, (12.112)
we have
VX VxA=yuld, {12.113)

where J is the current density. In our problem J is zero everywhere except in the
current loop. Therefore, away from the loop,
VXV, A,(rt)=0, (12.114)

which introduces Eq. 12.110.
Using the expression for the curl in spherical polar coordinates (Section 2.4), we
obtain {Example 2.4.2)

A, 204 1 9%4 19 '
VxVx(pOAw(r,G)z(po[—ErT"’—;-Ef—pﬁ—P%(cotﬂAw)J

=0. (12.115)

* Pair oft corresponding current elements { dA(gs) and I dA(p2), where @ ~ g1 = p2 — @.
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Letting A,(r, 0) = R(r)O(6) and separating variables, we have

d*R dR
‘2 % e =
o + 2i - n{n + DR =10, (12.116)
a*e 40 O]
e +C°EBEE+"("+E)@‘sin20=0' (12,0117

The sécond equation is the associated Legendre equation (12.83) with m1 = 1, and

we may immediately write

O(0) = Pl(cos 0). (12.118)

The separation constant n(n + 1) was chosen to keep this solution well behaved.
By trial, letting R(+) = r”, we find that o« =n, —n — 1. The first possibility is
discarded, for our solution must vanish as r — o0, Hence

b a a+1
Apn = ,,.11 Pi(cos®) = c,,(—) Pi(cos 0) (12.119)
. v
and
L) P! ut i
Alr, 8) = Z Cn(?) Pl(cos 0), {r > a). (12.120}
n=1

Here a is the radius of the current loop.
Since A, must be invariant to reflection in the equatorial plane by the symmetry

of our problem,

A (r, cos 0) = A(r, — cos ), (12.121)

the parity property of P)'(cos #) (Eq. 12.93) shows that ¢, = 0 for n even.

To complete the evaluation of the constants, we may use Eq. 12.119 to calculate
B, along the z-axis [B, = B,(r, § = 0)] and compare with the expression obtained
from the Biot and Savart law. This is the same technigue that is used in Example

12.3.3. We have

B,=VxA]
_ ! [‘3(~ gA)] (12.122)
= rsnglag T e =
cot 8 {04
=—A - =2,
r ¢ * r 08
Using
dP}(cos @) . dPMcos0)
= —sinf ——
a0 d(cos 8}
1 n{n + 1)
= ——pP4 ——— P 12,123
ACI— " ( )
and Eq. 12.87 with m = 1,
5 2cosd _,
Pi(cos ) — 7 P}cos0) + n(n + 1) P (cos &) =0, (12.124)

sin




(12.116)

(12.117)
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(12.118)
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we obtain
o nt1
B(r,0)= Y cu(n + 1) =g P(cos 0), r>a (12.125)
n=1 F
{(for all #). In particular, for 8 =0,
o al‘l+l
B(r,0)y= Y cn(n + 1} —5. (12.126)
a=1 r
We may also obtain ‘
1 A
By(r, 0) = —L 2 4e)
roor
o an+l
= ¥ 1 —35 Pa(cos 9), r>a. (12.127)
n=1 r
The Biot and Savart law states that
dh
aB =20 2T (ks units). (12.128)
4z F

‘We now integrate over the perimeter of our loop (radius a); the magnetic induction
field along the z-axis is kB,, where

ol a® a*\ ~32
=—;L;3(1 + ?) (12.129)

Expanding by the binomial theorem

uo I a? [ 3 (a)2 15 (a)"'
B = 28} +2(8) -
2 z° 2\z) T3 s ]

Cmpla® & (2r 4 DI @\ | -
=50 r;ﬂ(—i) W (;) > zZ>a. (12.130)
Equating Egs. 12.126 and 12.130 tefm by term (with r = z),' we find

to ! I

c, = 4, C3=—-%—; C2:C4:"'=0. (
12.131)
¢, = (— 1)~z tol y {(nf2)! " odd
! 2a(n + 1) " [(n — DRIEG)Y ‘
Equivalently, we may write
. Mol (2m)! ool (2n— 1!
ey = (—pp el Cm el Gn= DR

282 nl(n +1)! 2 (2n+ 2!

1 The descending power series is also unigue.
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paper)
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Can+ (20 + 1)(2n + 2)
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s

FIG.1213 Law of Biot and Savart applied to a circular loop

2n
() Pawe tcos o,

In
Cany1(20 + l)(i—]_) P, . (cos 0).

(12.133)

(12.134)

(12.135)

These fields may be described in closed form by the use of elliptic integrals.
Ex. 5.8.4 is an illustration of this approach. A third possibility is direct integration
of Eq. 12.109 by expanding the factor 1/r as a Legendre polynomial generating
function. The current is specified by Dirac delta functions. These methods have the
advantage of yielding the constants ¢, directly.

A comparison of magnetic current loop dipole fields and finite electric dipole
fields may be of interest. For the magnetic current loop dipole the preceding

analysis gives

(r. 8. ¢

ap=

—aQ

FIG. 12.14
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ol a? 3{a\? : :
B,-(i",g):T—'j[Pl_E(“‘) P3+"']1 {12.136)
ol a* 3fa\? 7
From the finite electric dipole potential of Section 12.1 we have
! 2
Er,0) = qu[Pi + 2P3(5) + ] (12.138)
LNy r
2
Ey(r, 0) = —° 3[P{ n (f) Pl + ] (12.139)
2nggr r

The two fields agree in form as far as the leading term is concerned, and this is the
basis for calling them both dipole fields.
As with electric multipoles, it is sometimes convenient to talk about point mag-
netic multipoles. For the dipole case, Eqs. 12.136 and 12.137, the point dipole is
‘ formed by taking the limit g —»0, I— oo with Ia* held constant. With n a unit
vector normal to the current loop (positive sense by right hand rule, Section 1.10)
the magnetic moment m is given by m = nina®.

loop

(12.133)

cos ), {12.134)

(12.135)

EXERCISES
of elliptic integrals.
- is direct integration 12.5.1 Prove that
lynomial generating Py = (— 1y M oy
b ("+ m)' n !

se methods have the
where P7{x) is defined by

drtm
finite electric dipole P =55 — e
lipole the preceding ) Hint. One approach is to apply Leibnitz® formula to (x + 1)"(x — 1)*.
12.5.2 Show that
P30y =0,
(2rn 4 1! (2n+ DU
Pln O — _1 n>_ ' 7 __1 Ul
dn(@=(—1) FINE (-1 !

by each of the three methods:

(a} use of recurrence relations,

(b) expansion of the generating function, and
v (c) Rodrigues’ formula.




