## PHYSICS 204B, WINTER 2011 <br> ASSIGNMENT FIVE

Due Monday, February 28.
[1.] Show that

$$
\left(\frac{i a-1}{i a+1}\right)^{i b}=\exp \left(-2 b \cot ^{-1} a\right)
$$

for $a$ and $b$ real.
[2.] Find the analytic function $f(z)$ (a) if $u(x, y)=x^{3}-3 x y^{2}$; and (b) if $v(x, y)=e^{-y} \sin x$.
[3.] Show that

$$
\int_{(0,0)}^{(1,1)} z^{*} d z
$$

depends on the path taken from $(0,0)$ to $(1,1)$ (a) by going first along the $y$-axis from $(0,0)$ to $(0,1)$ and then horizontally from $(0,1)$ to $(1,1)$; and (b) by going first along the $x$-axis from $(0,0)$ to $(1,0)$ and then vertically from $(1,0)$ to $(1,1)$.
Comment on the connection to whether $f(z)$ is analytic.
[4.] Show

$$
\int_{0}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}}=\frac{\pi a}{\left(a^{2}-1\right)^{3 / 2}} \quad \text { for } a>1
$$

[5.] Show

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x=\pi e^{-a}
$$

[6.] Show

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}} d x=\frac{\pi}{4 a^{3}}
$$

[7.] Evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

