PHYSICS 204B, WINTER 2011

ASSIGNMENT FOUR

Due Friday, February 11.
Do Problem 1 and, if you have time, try Problem 2. It should not be too bad a generalization, and, carries the important message that numerical solutions rather easily leap from where analytic solutions are possible to where they are not.
As I mentioned in class, on Friday we can build a code in C for this problem. I will discuss the general theory in room 416 at 2 pm . This will only take $20-30$ minutes. Then we will go to room 106 and write the code together. You are of course also welcome to tackle it on your own.
[1.] Solve Laplace's equation $\nabla^{2} \phi=0$ for the potential $\phi(x, y)$ for the square region in the figure, with the boundary conditions shown with $V=3$. Use the iterative method discussed in class, whose generalization to $d=2$ (with $\rho=0$) is,

$$
\phi(i, j)=\frac{1}{4}[\phi(i+1, j)+\phi(i-1, j)+\phi(i, j-1)+\phi(i, j+1)] .
$$

Use $d x=0.1$ and $a=1$. Compare your solution with the analytic one obtained in class by plotting the two results for $\phi(x, y=a / 2), 0<x<a$ on the same graph. Make a second graph comparing the analytic and numeric solutions for a vertical cut, $\phi(x=a / 2, y), 0<y<a$.

[2.] Solve Laplace's equation in the same way as problem 1 except for the less symmetric region of Figure 2.

