Physics 204B, Winter 2011, Problem Set 3

[1.] By differentiating the generating function $g(t, x)$ with respect to t, multiplying by $2 t$, and then adding $g(t, x)$, show that

$$
\frac{1-t^{2}}{\left(1-2 t x+t^{2}\right)^{3 / 2}}=\sum_{n=0}^{\infty}(2 n+1) P_{n}(x) t^{n}
$$

This result is useful in calculating the charge induced on a grounded metal sphere by a point charge q.
[2.] Verify the Dirac delta function expansions

$$
\delta(1-x)=\sum_{n=0}^{\infty} \frac{2 n+1}{2} P_{n}(x)
$$

and

$$
\delta(1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{2 n+1}{2} P_{n}(x)
$$

These expressions appear in a resolution of the Rayleigh plane wave expansion into incoming and outgoing spherical waves. Note: Assume that the entire Dirac delta function is covered when integrating over $[-1,1]$.
[3.] Determine the electrostatic potential (Legendre expansion) of a circular ring of electric charge for $r<a$.
[4.] Calculate the electric field produced by a charged conducting ring for (a) $r>a$, and (b) $r<a$.
[5.] A uniformly charged spherical shell is rotating with constant angular velocity. (a) Calculate the magnetic induction \vec{B} along the axis of rotation outside the sphere. (b) Using the vector potential series, find \vec{A} and \vec{B} for all space outside the sphere.
[6.] Verify by explicit calculation that

$$
L_{+} Y_{1}^{0}(\theta, \phi)=-\sqrt{\frac{3}{4 \pi}} \sin \theta e^{i \phi}=\sqrt{2} Y_{1}^{1}(\theta, \phi)
$$

and

$$
L_{-} Y_{1}^{0}(\theta, \phi)=+\sqrt{\frac{3}{4 \pi}} \sin \theta e^{-i \phi}=\sqrt{2} Y_{1}^{-1}(\theta, \phi)
$$

