## Physics 204B, Winter 2011, Problem Set 1

[1.] In class we introduced the generating function of the Bessel polynomials,

$$
g(x, t)=\exp \left[\frac{x}{2}\left(t-\frac{1}{t}\right)\right]=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n}
$$

By taking the derivative $\partial / \partial t$ on both expressions for $g$, derive the recurrence relation,

$$
J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x) .
$$

[2.] Show the Laplace transform of the zeroth order Bessel function,

$$
\mathcal{J}_{0}(a)=\int_{0}^{\infty} e^{-x a} J_{0}(b x) d x=1 / \sqrt{a^{2}+b^{2}}
$$

Hint: One approach is to use the series expansion of $J_{0}(x)$. (I used $a$ for the transform variable to avoid confusion with the summation variable $s$ used in class for the series index.)
[3.] Since the trigonometric functions form a complete set (the idea behind Fourier series) we should be able to expand the Bessel functions in terms of them. Show that this is indeed this the case by proving

$$
\begin{align*}
& \text { (a) } \quad \begin{array}{l}
\cos x=J_{0}(x)+2 \sum_{n=1}^{\infty}(-1)^{n} J_{2 n}(x) \\
\text { (b) } \quad \sin x=2 \sum_{n=1}^{\infty}(-1)^{n+1} J_{2 n+1}(x)
\end{array}, \$ \text {, }
\end{align*}
$$

Why would you expect the expansion of $\cos (\sin )$ to involve only Bessel functions $J_{n}(x)$ of even(odd) order $n$ ?
[4.] Consider a cylinder of radius $a$ and height $h$ with potential $\psi=0$ on all surfaces except for the top end section, which has a given potential $\psi(\rho, \phi)$. Write down an expression for the potential $\psi(\rho, \phi, z)$ everywhere inside the cylinder in terms of an expansion in the appropriate functions. Include an equation for the expansion coefficients. Can you evaluate the coefficients when $\psi(\rho, \phi)=\psi_{0}$, a constant?
[5.] Stone and Goldbart Problem 8-13.

