Physics 204A, Fall 2010, Problem Set 7

[1.] A string is clamped at both ends $x=0$ and $x=L$. The string is set in motion by a sharp blow at $x=a$, so that

$$
y(x, 0)=0 \quad \frac{\partial y(x, t)}{\partial t}=L v_{0} \delta(x-a)
$$

at $t=0$. The constant L is included in the velocity initial condition to compensate for the dimensions (inverse length) of $\delta(x-a)$. Solve the wave equation subject to these initial conditions.
Hint: It is useful to observe that,

$$
\delta(x-a)=\frac{2}{L} \sum_{n=1}^{\infty} \sin \left(\frac{n \pi a}{L}\right) \sin \left(\frac{n \pi x}{L}\right) .
$$

Can you convince yourself this is correct?
[2.] In class we introduced the generating function of the Bessel polynomials,

$$
g(x, t)=\exp \left[\frac{x}{2}\left(t-\frac{1}{t}\right)\right]=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n} .
$$

By taking the derivative $\partial / \partial t$ on both expressions for g, derive the recurrence relation,

$$
J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x) .
$$

[3.] Show the Laplace transform of the zeroth order Bessel function,

$$
\mathcal{J}_{0}(a)=\int_{0}^{\infty} e^{-x a} J_{0}(b x) d x=1 / \sqrt{a^{2}+b^{2}}
$$

Hint: One approach is to use the series expansion of $J_{0}(x)$. (I used a for the transform variable to avoid confusion with the summation variable s used in class for the series index.)
[4.] Redo Problem 1 if the initial conditions instead are to set the string in motion by grabbing it in the middle $(x=L / 2)$ and displacing it in the shape of a triangle:

$$
\begin{aligned}
y(x, 0) & =2 a x / L & & 0<x<L / 2 \\
y(x, 0) & =2 a(1-x / L) & & L / 2<x<L
\end{aligned}
$$

The initial velocity is zero:

$$
\left.\frac{\partial y(x, t)}{\partial t}\right|_{t=0}=0
$$

