Physics 204A, Fall 2010, Problem Set 6

[1.] [Problem 4, UCD Qualifying Exam 2000] Obtain the Fourier expansions of the following functions:

$$
\begin{array}{ll}
f(x)=e^{-x} & 0<x<1 \\
f(x)=0 & \\
\text { otherwise }
\end{array}
$$

and

$$
\begin{aligned}
g(x) & =e^{-x} \quad 0<x<1 \\
& =\text { extended periodically (with period } 1 \text {) from }-\infty \rightarrow+\infty
\end{aligned}
$$

[2.] Let $F(\omega)$ be the Fourier transform of $f(x)$ and $G(\omega)$ be the Fourier transform of $g(x)=f(x+a)$. Show that

$$
G(\omega)=e^{+i a \omega} F(\omega)
$$

[3.] Using the sequence

$$
\delta_{n}(x)=\frac{n}{\sqrt{\pi}} e^{-n^{2} x^{2}}
$$

show that

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} d k
$$

Hint: Remember $\delta(x)$ is defined in terms of its behavior as part of an integrand.
[4.] The function $f(r)$ has a Fourier transform

$$
g(\mathbf{k})=\frac{1}{(2 \pi)^{3 / 2}} \int f(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}} d^{3} r=\frac{1}{(2 \pi)^{3 / 2} k^{2}}
$$

Determine $f(r)$. Hint: Use spherical polar coordinates in k-space.
[5.] Using partial fraction expansions, show that the inverse Laplace transform of $\frac{1}{(s+a)(s+b)}$
is $\frac{e^{-a t}-e^{-b t}}{b-a}$ for $a \neq b$.
[6.] A mass m is attached to one end of an unstretched spring, spring constant k. At time $t=0$ the free end of the spring experiences a constant acceleration a away from the mass. Using Laplace transforms, find the position x of the mass m as a function of time and determine the limiting form of $x(t)$ for small t.
[7.] Show that the Laplace transform of $\cosh (a t) \cos (a t)$ is $s^{3} /\left(s^{4}+4 a^{4}\right)$.
[8.] Solve Newton's equation for a mass m hit by an impulsive force,

$$
m \frac{d^{2} x}{d t^{2}}=P \delta(t)
$$

using Laplace transforms.
[9.] A random walker moves on a discrete lattice in one dimension, starting at the origin, with equal probability of hopping one step to the left and right. Show that the mean square distance $\left\langle n^{2}\right\rangle$ from the origin after N steps is proportional to N.

