Physics 204A, Fall 2010, Problem Set 4

[1.] In class we defined the "length" $|f|$ of $f(x)$ to be $|f|^{2}=\int f(x)^{2} d x$ (for real functions). Stone and Goldbart comment that, more generally, one can define the length $|f|$ by $|f|^{p}=$ $\int f(x)^{p} d x$, and that the triangle inequality is satisfied for $1 \leq p<\infty$. By considering $f(x)=1$ and $g(x)=x$, show that the triangle inequality is indeed satisfied for $p=2$ and $p=3$, but is violated for $p=1 / 2$. Use the interval $0 \leq x \leq 1$ for your domain for the functions.
[2a.] Calculate the Fourier series for the sawtooth wave, $f(x)=x$, for x in $(-\pi, \pi)$ and $f(x+2 \pi)=f(x)$. (Note that in class we defined $f(x)$ on the interval $(0,2 \pi)$ but it is fine to use any interval.) Make an argument based on the appearance of the function for why some of the a_{n} and b_{n} vanish.
[2b.] Calculate the sum of the Fourier series of [2a] using 4-, 6-, 8-, and 10- terms at $x / \pi=-1.00,-0.98,-0.96, \cdots, 0.00,0.02, \ldots 1.00$. Plot your results.
[3.] Calculate the Fourier series for $f(x)=x^{2}$, for x in $(-\pi, \pi)$ and $f(x+2 \pi)=f(x)$. By plugging in $x=0$ and $x=\pi$ evaluate the sums $S_{1}=\sum_{n=1}^{\infty} 1 / n^{2}$ and $S_{2}=\sum_{n=1}^{\infty}(-1)^{n+1} / n^{2}$. By using Parseval's theorem (see Stone and Goldbart), evaluate $S_{3}=\sum_{n=1}^{\infty} 1 / n^{4}$.
[4.] In class we derived the Fourier series for the "square wave" function $f(x)=1$ for $0 \leq x<\pi$ and $f(x)=0$ for $\pi \leq x<2 \pi$. Write a program to evaluate the Fourier series for $x=\pi / 8, \pi / 4,3 \pi / 2$. How many terms do you need to include to get the correct $f(x)$ to an accuracy of 0.04 ?

