## Physics 204A, Fall 2010, Problem Set 3

[1a.] An operator $\mathcal{P}$ is said to be a "projection" if $\mathcal{P}=\mathcal{P}^{2}$. Prove the eigenvalues of a projection operator must be $\lambda=0,1$.
[1b.] A unit vector $|w\rangle$ has components $w_{i}$ in a given orthonormal basis in a three dimensional space. That is, $|w\rangle=w_{1}\left|e_{1}\right\rangle+w_{2}\left|e_{2}\right\rangle+w_{3}\left|e_{3}\right\rangle$ with $\sum w_{i}^{2}=1$. Write the matrix (in the basis $\left|e_{i}\right\rangle$ ) representing the operator which projects any other vector $|v\rangle$ onto the plane perpendicular to $|w\rangle$. Show it obeys the result of [1a].
[2.] Redo the coupled mass-spring problem in class, but chose the masses to alternate: $M_{l}=M_{A}$ for $l$ even and $M_{l}=M_{B}$ for $l$ odd. Hint: It is fine to assume the same time dependence for $x_{l}(t)=v_{l} e^{i \omega t}$ as in class. However, the spatial dependence $v_{l}=v_{0} e^{i q l}$ is no longer quite right. Can you think of a relatively small variation of this ansatz which recognizes that $M_{A} \neq M_{B}$, but still takes advantage of the fact that $M_{1}=M_{3}=M_{5}=\cdots=M_{B}$ and $M_{2}=M_{4}=M_{6}=\cdots=M_{A}$ ? Put another way, the system still has translation invariance, but you have to consider a "unit" consisting of a pair of masses $M_{A}, M_{B}$.
[3.] Show that

$$
\begin{aligned}
x_{l}(t) & =v_{0}(-1)^{l}\left(\frac{1-\epsilon}{1+\epsilon}\right)^{l} e^{i \omega t} \\
\omega^{2} & =\frac{4 K}{M} \frac{1}{1-\epsilon^{2}}
\end{aligned}
$$

is a solution of the problem of an infinite set of vibrating masses $M$ connected by springs $K$ and with a light defect $M^{\prime}=M(1-\epsilon)$ at $l=0$. Does this functional form make sense as $\epsilon \rightarrow 0$ and as $\epsilon \rightarrow 1$ ?

Comment: To do problems [4a], and [4b] below, you may want to keep $M$ as part of the matrix containing the spring constant $K$, since it is no longer constant. Is your matrix symmetric? (If not, be careful you do not use a numerical routine for diagonalization that assumes symmetric.) You can avoid these issues by doing an alternate problem with a defect spring instead of a defect mass if you prefer.
[4a.] Solve numerically (i.e. by actually diagonalizing a matrix) for all the normal modes of a collection of $N=128$ masses $M$ connected by springs $K$. Show that you agree with the solution in class, e.g. verify $4-5$ of the list of eigenvalues produced by the computer are correct. Also show all the participation ratios are"large", i.e. within a factor of 2 or so of $N$. Note: There is a subtlety here because all but two of the eigenvalues are doubly degenerate: $q$ and $2 \pi-q$ have the same $\omega$. In such a case the eigenvectors can be arbitrary linear combinations.
[4b.] Redo [4a] (again numerically) with a single defect mass $M(1-\epsilon)$. Verify your result agrees with [3]. Plot one of the delocalized eigenvectors and also the localized eigenvector
for $\epsilon=0.1$. Show that one of your participation ratios is "small",
[5.] In class we showed in general that stochastic matrices have eigenvalues which obey $|\lambda| \leq 1$, and that $\lambda=1$ is one of the eigenvalues. Show this is the case for the specific matrix

| $\frac{1}{3}$ | 0 | $\frac{1}{2}$ |
| :--- | :--- | :--- |
| $\frac{1}{3}$ | $\frac{1}{2}$ | $\frac{1}{6}$ |
| $\frac{1}{3}$ | $\frac{1}{2}$ | $\frac{1}{3}$ |

Determine the left and right eigenvectors with eigenvalue $\lambda=1$. Are they the same?

