
Physics 204A, Fall 2010, Problem Set 3

[1a.] An operator P is said to be a “projection” if P = P2. Prove the eigenvalues of a
projection operator must be λ = 0, 1.

[1b.] A unit vector |w 〉 has components wi in a given orthonormal basis in a three
dimensional space. That is, |w 〉 = w1|e1 〉 + w2|e2 〉 + w3|e3 〉 with

∑

w2

i = 1. Write the
matrix (in the basis |ei 〉) representing the operator which projects any other vector |v 〉 onto
the plane perpendicular to |w 〉. Show it obeys the result of [1a].

[2.] Redo the coupled mass-spring problem in class, but chose the masses to alternate:
Ml = MA for l even and Ml = MB for l odd. Hint: It is fine to assume the same time
dependence for xl(t) = vl e

iωt as in class. However, the spatial dependence vl = v0 eiql is no
longer quite right. Can you think of a relatively small variation of this ansatz which recognizes
that MA 6= MB, but still takes advantage of the fact that M1 = M3 = M5 = · · · = MB and
M2 = M4 = M6 = · · · = MA? Put another way, the system still has translation invariance,
but you have to consider a “unit” consisting of a pair of masses MA,MB.

[3.] Show that

xl(t) = v0(−1)l
(1 − ǫ

1 + ǫ

)l

eiωt

ω2 =
4K

M

1

1 − ǫ2

is a solution of the problem of an infinite set of vibrating masses M connected by springs K

and with a light defect M ′ = M(1 − ǫ) at l = 0. Does this functional form make sense as
ǫ → 0 and as ǫ → 1?

Comment: To do problems [4a], and [4b] below, you may want to keep M as part of the
matrix containing the spring constant K, since it is no longer constant. Is your matrix
symmetric? (If not, be careful you do not use a numerical routine for diagonalization that
assumes symmetric.) You can avoid these issues by doing an alternate problem with a defect
spring instead of a defect mass if you prefer.

[4a.] Solve numerically (i.e. by actually diagonalizing a matrix) for all the normal modes
of a collection of N = 128 masses M connected by springs K. Show that you agree with
the solution in class, e.g. verify 4-5 of the list of eigenvalues produced by the computer
are correct. Also show all the participation ratios are “large”, i.e. within a factor of 2 or
so of N . Note: There is a subtlety here because all but two of the eigenvalues are doubly
degenerate: q and 2π − q have the same ω. In such a case the eigenvectors can be arbitrary
linear combinations.

[4b.] Redo [4a] (again numerically) with a single defect mass M(1 − ǫ). Verify your result
agrees with [3]. Plot one of the delocalized eigenvectors and also the localized eigenvector
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for ǫ = 0.1. Show that one of your participation ratios is “small”,

[5.] In class we showed in general that stochastic matrices have eigenvalues which obey
|λ| ≤ 1, and that λ = 1 is one of the eigenvalues. Show this is the case for the specific matrix

1

3
0 1

2

1

3

1

2

1

6

1

3

1

2

1

3

Determine the left and right eigenvectors with eigenvalue λ = 1. Are they the same?
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