MIDTERM EXAM, FALL 2005

Physics 204A- Mathematical Physics
[1.] (a) What are the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{ccc}
\pi / 2 & 0 & 0 \\
0 & \pi & \pi \\
0 & \pi & \pi
\end{array}\right) ?
$$

(b) What matrix would you get if you diagonalized A ?
(c) What is the inverse of A ?
(d) Compute $\cos A$.
[2.] Prove that matrix multiplication is associative. That is, demonstrate $A(B C)=$ $(A B) C$, where A, B, and C are $N \mathrm{x} N$ matrices.
[3.] (a) A small drop of ink is placed at the center of a glass of water and diffuses outward. How does the mean square displacement $\left\langle x^{2}\right\rangle$ of the ink away from its original location depend on time t ? (Just consider the diffusion process. That is, ignore effects like a difference in buoyancy of ink and water.)
(b) Evaluate the sum S,

$$
S=\sum_{n=0}^{N}\binom{N}{n} x^{n} \quad \text { where } \quad\binom{N}{n}=\frac{N!}{n!(N-n)!}
$$

[4.] Obtain the Fourier expansions of the following functions:

$$
\begin{array}{lr}
f(x)=-1 & -1<x<0 \\
f(x)=1 & 0<x<1 \\
f(x)=0 & \text { otherwise }
\end{array}
$$

and

$$
\begin{array}{rlrl}
g(x) & =-1 & & -1<x<0 \\
g(x) & =1 & & 0<x<1 \\
& =\text { extended periodically (with period 2) from }-\infty \rightarrow+\infty
\end{array}
$$

