MIDTERM EXAM, FALL 2004

Physics 204A- Mathematical Physics
[1.] (a) What are the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) ?
$$

(b) What matrix would you get if you diagonalized A ?
(c) What is the inverse of A ?
(d) Compute e^{A}. Hint: It is useful to take advantage of the fact that A is block diagonal.
[2.] (a) When we are expanding a function which has period 2π as a Fourier series, we are relying on the fact that the functions $\sin n x$ and $\cos m x$ are complete and orthogonal. What is a general way in which one goes about proving that a particular collection of functions form such a set?
(b) Prove orthogonality explicitly. That is, evaluate the integral,

$$
\int_{0}^{2 \pi} \sin m x \sin n x d x
$$

for integer values of n and m.
[3.] (a) Show that

$$
\rho(x, t)=c e^{i k x-D k^{2} t}
$$

is a solution of the diffusion equation,

$$
\frac{\partial \rho}{\partial t}=D \frac{\partial^{2} \rho}{\partial x^{2}}
$$

(b) What is the general solution of the diffusion equation?
(c) Suppose $\rho(x, 0)=h$ for $-a<x<+a$ and $\rho(x, 0)=0$ otherwise. Write an expression for $\rho(x, t)$. It is not necessary to do the final integral over k.
(d) Suppose $h=\frac{1}{2 a}$. Take the limit $a \rightarrow 0$. Now you can do the integral over k in the expression for $\rho(x, t)$ of part (c). What do you get? Have you seen the result before? When?

